MHB A generalized Arctangent integral/function

DreamWeaver
Messages
297
Reaction score
0
This is NOT a tutorial, so by all means, if you've a mind to, the please DO very much feel free to contribute...Preamble:As a consequence of various families of definite integrals I've been studying recently, I've been led to consider what I've come to call the q-shifted Inverse Tangent Integral (NB. I'm not sure about the notation, and I might well change it, but it'll do for now):$$\text{Etan}^{-1}(z,m,q)=\sum_{k=0}^{\infty}(-1)^k \frac{z^{2k+1}}{(2k+q+1)^m}$$This function has arisen quite naturally, as a generalization of a number of other functions. The following special cases will hopefully help illustrate the point:$$\lim_{z \to 1} \, \text{Etan}^{-1}(z,m,q)= \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+q+1)^m}$$

The sum on the RHS can variously be expressed as, or related to, polygamma and Hurwitz Zeta functions.Conversely, letting $$q$$ approach zero, we have:$$\lim_{q \to 0^{+}} \, \text{Etan}^{-1}(z,m,q)=
\sum_{k=0}^{\infty}(-1)^k \frac{z^{2k+1}}{(2k+1)^m}= \text{Ti}_m(z)$$Which is the order-$$m$$ generalization of the Inverse Tangent Integral $$\text{Ti}_2(z)$$:$$\text{Ti}_2(z)=\int_0^z\frac{\tan^{-1}x}{x}\, dx$$

I've a fair few results to follow, as and when I get time to post, but like I say, if any of you feel like joining in, then you are very much welcome to do so... (Heidy)
 
Physics news on Phys.org
For illustrative purposes, here's an elementary integral that can be expressed in terms of $$\text{Etan}^{-1}(z,m,q)$$:$$T(z,m,q)=\int_0^zx^{q-1}\tan^{-1}x\,dx$$

An evaluation in terms of polygamma functions is not too hard to find, provided $$z=1$$. But why stop there...?

For $$0 < z \le 1$$, expand the arctangent into series form to obtain:

$$\sum_{k=0}^{\infty}\frac{(-1)^k}{(2k+1)}\int_0^zx^{q-1}x^{2k+1}\,dx=\sum_{k=0}^{\infty}\frac{(-1)^k}{(2k+1)} \left[ \frac{x^{2k+q+1}}{(2k+q+1)} \right]_0^z=
$$

$$ z^q \sum_{k=0}^{\infty} \frac{(-1)^k z^{2k+1}}{(2k+q) (2k+q+1)}= $$$$ z^q \sum_{k=0}^{\infty} (-1)^k z^{2k+1} \frac{(2k+q+1)-(2k+1)}{q(2k+1) (2k+q+1)}=$$$$\frac{z^q}{q}\left[ \sum_{k=0}^{\infty} \frac{(-1)^k z^{2k+1}}{(2k+1) }-\sum_{k=0}^{\infty} \frac{(-1)^k z^{2k+1}}{ (2k+q+1)} \right]=$$$$\frac{z^q}{q}\left[ \text{Ti}_1(z)-\text{Etan}^{-1}(z,1,q) \right]=$$$$\frac{z^q}{q}\left[ \tan^{-1}z-\text{Etan}^{-1}(z,1,q) \right]$$(Heidy)
- - - Updated - - -

Incidentally, note that:

$$\frac{d^n}{dq^n}T(z,m,q)=\int_0^zx^{q-1}(\log x)^n\tan^{-1}x\, dx$$
 
Last edited:
You can relate the q-shifted arctangent integral to polylogarithms by letting $$q \to 1$$ that reminds me of Q-series.
 
ZaidAlyafey said:
You can relate the q-shifted arctangent integral to polylogarithms by letting $$q \to 1$$ that reminds me of Q-series.

Well played, Sir! I've pages and pages of stuff worked out for this function, but I missed that one. Thanks! (Cool)Incidentally, it was the similarity with q-series that led to - at first - call this the Elliptic Tangent function, hence the "$$E$$" in $$\text{Etan}$$...
 
$$\text{Etan}^{-1}(z,m,1)=\sum_{k=0}^{\infty}(-1)^k \frac{z^{2k+1}}{(2k+2)^m}= \frac{z}{2^m}\sum_{k\geq 0}\frac{(-z^2)^{k}}{(k+1)^m}=\frac{-1}{2^m\, z}\sum_{k\geq 1}\frac{(-z^2)^{k}}{k^m}$$

So we have the following

$$\tag{1} \text{Etan}^{-1}(z,m,1) = -2^{-m} \frac{\text{Li}_m(-z^2)}{z}$$

Now you can use the established result

$$\text{Li}_m(z^2) = 2^{1-m} \left( \text{Li}_m(z)+\text{Li}_m(-z) \right)$$

Make good use of the complex numbers

$$\text{Li}_m(-z^2) = 2^{1-m} \left( \text{Li}_m(iz)+\text{Li}_m(-iz) \right)$$

Substituting in (1) then integrating with respect to z is surely interesting :) .
 
Last edited:
Here are a few definite integrals... $$p \ge 0, \, p \ne q$$

$$\int_0^1x^{p-1}\text{Etan}^{-1}(x,1,q)\,dx=\frac{1}{q-p}\left[ \text{Etan}^{-1}(1,1,p) - \text{Etan}^{-1}(1,1,q) \right]$$$$\int_0^1x^{p-1}\text{Etan}^{-1}(x,2,q)\,dx=\frac{1}{(q-p)^2}\left[ \text{Etan}^{-1}(1,1,p) - \text{Etan}^{-1}(1,1,q) \right]-\frac{1}{(q-p)}\text{Etan}^{-1}(1,2,q) $$
 
ZaidAlyafey said:
$$\text{Etan}^{-1}(z,m,1)=\sum_{k=0}^{\infty}(-1)^k \frac{z^{2k+1}}{(2k+2)^m}= \frac{z}{2^m}\sum_{k\geq 0}\frac{(-z^2)^{k}}{(k+1)^m}=\frac{-1}{2^m\, z}\sum_{k\geq 1}\frac{(-z^2)^{k}}{k^m}$$

So we have the following

$$\tag{1} \text{Etan}^{-1}(z,m,1) = -2^{-m} \frac{\text{Li}_m(-z^2)}{z}$$

Now you can use the established result

$$\text{Li}_m(z^2) = 2^{1-m} \left( \text{Li}_m(z)+\text{Li}_m(-z) \right)$$

Make good use of the complex numbers

$$\text{Li}_m(-z^2) = 2^{1-m} \left( \text{Li}_m(iz)+\text{Li}_m(-iz) \right)$$

Substituting in (1) then integrating with respect to z is surely interesting :) .
(Muscle) Nicely done...I was making use of the same relations, but in a different way, since:

$$\text{Ti}_2(x)=\frac{1}{2i}\left[ \text{Li}_2(ix)-\text{Li}_2(-ix)\right]$$

Or equivalently

$$\text{Li}_2(ix)=\frac{1}{4}\text{Li}_2(-x^2)+i\text{Ti}_2(x)$$EDIT: hence me considering $$\text{Etan}$$ in terms of my pet favourites, the regular Inverse Tangent Integrals...

Incidentally, and I'll add a bit more about this tomorrow if I get time, but the $$\text{Etan}$$ function gives a neat closed form to a particular Clausen Function generalization I've been considering recently (a different one to that I posted about in the tutorials board).

I'd be keen to get you take on feedback on that... But now, must sleep. Bed calling. NN :D
 
Last edited:
Back
Top