A generalized log sine integral .

Click For Summary
SUMMARY

This discussion focuses on deriving a generalized formula for the integral $$I(a,t) = \int^t_0 x \log|\sin(a x)| \, dx$$ for positive values of $$a$$ and $$t$$. The special case $$I(1,\frac{\pi}{2})$$ is evaluated, yielding $$I(1,\frac{\pi}{2}) = \frac{7}{16}\zeta(3) - \frac{\pi^2}{8}\log(2)$$. The generalized form $$I_0(t,1)$$ is also explored, leading to the conjecture $$I_0(t,1) = -\Re(\mathrm{Li}_3(e^{it})) + \zeta(3)$$. The discussion concludes with specific evaluations of $$I\left(\frac{1}{2},\frac{\pi}{3}\right)$$ and $$I\left(\frac{1}{2},\frac{2\pi}{3}\right)$$, highlighting the complexity of these integrals.

PREREQUISITES
  • Understanding of integral calculus, particularly improper integrals.
  • Familiarity with logarithmic functions and their properties.
  • Knowledge of special functions, specifically Clausen and polylogarithm functions.
  • Basic understanding of the Riemann zeta function and its applications.
NEXT STEPS
  • Study the properties and applications of Clausen functions in integrals.
  • Explore the derivation and applications of the polylogarithm function, particularly $$\mathrm{Li}_3$$.
  • Investigate the relationship between logarithmic integrals and the Riemann zeta function.
  • Learn about advanced techniques in integration, such as integration by parts and series expansions.
USEFUL FOR

Mathematicians, physicists, and researchers involved in advanced calculus, particularly those working with integrals involving logarithmic and trigonometric functions.

alyafey22
Gold Member
MHB
Messages
1,556
Reaction score
2
This thread will be dedicated to find a general formula for the integral
$$I(a,t) = \int^t_0 x \log|\sin(a x )| \, dx \,\,\,\,\, a,t>0$$​

This is not a tutorial . Any comments or attempts are always be welcomed .
 
Last edited:
Physics news on Phys.org
Re: A generalized log gamma integral .

We consider the special case

$$I\left(1,\frac{\pi}{2} \right) = \int^{\frac{\pi}{2}}_0 x \log|\sin(x )| \, dx =\int^{\frac{\pi}{2}}_0 x \log|2\sin(x )| -\frac{\pi^2}{8}\log(2)$$

Now we integrate by parts

$$
\begin{align}
\int^{\frac{\pi}{2}}_0 x \log|2\sin(x )| dx &=\frac{1}{2} \int^{\frac{\pi}{2}}_0 \mathrm{Cl}_2(2\theta)\, d\theta\\ &=\frac{1}{2} \int^{\frac{\pi}{2}}_0 \sum_{n=1}^{\infty}\frac{\sin(2n\theta)}{n^2}\, d\theta \\ &=-\frac{1}{4}\sum_{n=1}\frac{(-1)^n}{n^3}+\frac{1}{4}\sum_{n=1}\frac{1}{n^3}\\
&=\frac{7}{16}\zeta(3)
\end{align}
$$

Eventually we have

$$I\left(1,\frac{\pi}{2} \right) = \frac{7}{16}\zeta(3)-\frac{\pi^2}{8}\log(2)$$
 
Last edited:
Re: A generalized log gamma integral .

For the generalized form we need to find the general integral

$$I_0(t,1) = \int^t_0 \mathrm{Cl}_2(\theta) \, d\theta $$

It is easy to see that

$$\mathrm{Cl}(\theta) = \Im \left(\mathrm{Li}_2(e^{i\theta}) \right)$$

We already proved in separately that

$$\Im \left(\mathrm{Li}_2(e^{i\theta}) \right) = \frac{\mathrm{Li}_2(e^{i\theta}) -\mathrm{Li}_2(e^{-i\theta}) }{2i}$$

Now consider

$$\int^t_0 \mathrm{Li}_2(e^{i\theta})\, d\theta $$

Now we consider $t\in (0,2\pi]$ and let $z=e^{i\theta }$ hence $-i \log(z) = \theta $

$$-i\int^{e^{i\theta}}_{1} \frac{\mathrm{Li}_2(z)}{z} \, dz = -i \left(\mathrm{Li}_3(e^{i\theta}) -\zeta(3)\right) $$

Simalrily we have

$$\int^t_0 \mathrm{Li}_2(e^{-i\theta})\, d\theta =\int^{e^{-i\theta}}_{1} \frac{\mathrm{Li}_2(z)}{z} \, dz = i \left(\mathrm{Li}_3(e^{-i\theta}) -\zeta(3)\right)$$

Hence we have

$$\frac{-i \left(\mathrm{Li}_3(e^{i\theta}) -\zeta(3)\right)-i \left(\mathrm{Li}_3(e^{-i\theta}) -\zeta(3)\right)}{2i}=-\frac{\mathrm{Li}_3(e^{i\theta})+\mathrm{Li}_3(e^{-i\theta})}{2}+\zeta(3)$$

I conjucture that

$$I_0(t,1) = -\Re \left( \mathrm{Li}_3 (e^{it}) \right)+\zeta(3)$$

For the special case

$$I_0 \left(\frac{\pi}{2},1 \right)= \frac{7}{4} \zeta(3)$$

Gotta rush now , I hope I didn't make mistakes :) .
 
Last edited:
\begin{align}
I(a,t) = \int^t_0 x \log|\sin(a x )| \, dx &= \frac{1}{4a^2} \int^{2at}_0 x \log |\sin \frac{x}{2}|\, dx \\ &= \frac{1}{4a^2} \int^{2at}_0 x \log |2\sin \frac{x}{2}|\, dx-\frac{\log(2)}{2} t^2\\ &= -\frac{t}{2a}\mathrm{Cl}_2(2at) + \frac{1}{4a^2}\int^{2at}_0\mathrm{Cl}_2(x) dx-\frac{\log(2)}{2} t^2\\
&= -\frac{t}{2a}\mathrm{Cl}_2(2at)+\frac{1}{4a^2} \left( \zeta(3)-\Re \left( \mathrm{Li}_3 (e^{2i \, at}) \right) \right)-\frac{\log(2)}{2} t^2
\end{align}

Hence we have

$$I(a,t) = -\frac{t}{2a}\mathrm{Cl}_2(2at)+\frac{1}{4a^2} \left( \zeta(3)-\Re \left( \mathrm{Li}_3 (e^{2i \, at}) \right) \right)-\frac{\log(2)}{2} t^2 $$

Hence we have for $a=\frac{1}{2}$

$$I \left(\frac{1}{2},t \right) = -t\, \mathrm{Cl}_2(t)-\Re \left( \mathrm{Li}_3\, e^{i \, t} \right)-\frac{\log(2)}{2} t^2+\zeta(3)$$

or we have

$$I \left(\frac{1}{2},t \right) = -t\, \mathrm{Cl}_2(t)- \mathrm{Cl}_3(t)-\frac{\log(2)}{2} t^2+\zeta(3)$$
 
Here's a little something you might find interesting, Zaid... ;)Let's say you evaluate the function

$$I(a,t) = \int^t_0 x \log|\sin(a x )| \, dx $$

for a few particular values of the parameters $$a$$ and $$t$$, in terms of Clausen functions, etc. Next, perform the substitution $$y=ax$$ to obtain$$I(a,t) = \frac{1}{a^2}\int^{at}_0 y \log|\sin y| \, dx $$After that, provided that $$0 < at < \pi$$ - whereby you can also drop the absolute value sign in the integrand - you can apply the logsine series result:$$\log (\sin x) = \log x + \sum_{k=1}^{\infty}(-1)^k\frac{2^{2k-1} B_{2k}}{k (2k)!} x^{2k} \quad [ \text{valid for} \, 0 < x < \pi]$$to get$$I(a,t) = \frac{1}{a^2}\int^{at}_0 x\log x \,dx + \frac{1}{a^2} \sum_{k=1}^{\infty}(-1)^k\frac{2^{2k-1} B_{2k}}{k (2k)!} \int_0^{at} x^{2k+1}\,dx=$$$$\frac{t^2}{4}(2\log (at)-1) + \frac{1}{a^2} \sum_{k=1}^{\infty}(-1)^k\frac{2^{2k-1} B_{2k}}{k (2k)!} \int_0^{at} x^{2k+1}\,dx=$$$$\frac{t^2}{4}(2\log (at)-1) + \frac{1}{a^2} \sum_{k=1}^{\infty}(-1)^k\frac{2^{2k-1} B_{2k}}{k (2k)! (2k+2) } (at)^{2k+2} $$
Next, take the classic Zeta function result$$\zeta(2k)=(-1)^{k+1} \frac{(2\pi)^{2k} B_{2k}}{2(2k)!} \quad k \in \mathbb{Z} \ge 1$$and invert the terms to express the Bernoulli numbers as$$B_{2k}=2(-1)^{k+1}\frac{(2k)!}{(2\pi)^{2k}} \zeta(2k)$$Substitute this back into the series result to obtain$$I(a,t) = \frac{t^2}{4}(2\log (at)-1) +$$

$$ \frac{1}{a^2} \sum_{k=1}^{\infty}(-1)^k\frac{2^{2k-1} }{k (2k)! (2k+2) } \left[ 2(-1)^{k+1}\frac{(2k)!}{(2\pi)^{2k}} \zeta(2k) \right] (at)^{2k+2} =$$$$\frac{t^2}{4}(2\log (at)-1) - \frac{1}{2a^2} \sum_{k=1}^{\infty} \frac{ \zeta(2k) }{k(k+1)\pi^{2k}} (at)^{2k+2}$$Finally, use the explicit evaluations you have of the function $$I(a,t)$$ - provided that $$0 < at < \pi$$ - and you have a closed form evaluation for the Zeta Series above:
$$\sum_{k=1}^{\infty} \frac{ \zeta(2k) }{k(k+1)\pi^{2k}} (at)^{2k+2} = \frac{a^2 t^2}{2}(2\log (at)-1) - 2a^2 \, I(a,t)$$

(Heidy)(Heidy)(Heidy)NB. Made a bit of a typo in there to start with, but hopefully it's all fixed now... Main thing is the process, anyhoo lol
 
Last edited:
Well, using the Lewin's book using entries [4.18],[6.18] and [16.23] , I got the following

$$I\left(\frac{1}{2},\frac{\pi}{3} \right)=\int^{\frac{\pi}{3}}_0 \theta \, \log \left( \sin \frac{\theta}{2} \right)\, d\theta = -\frac{\pi}{3}\mathrm{Cl}_2\left( \frac{\pi}{3}\right)-\frac{\pi^2 \log(2)}{18}+\frac{2}{3}\zeta(3)$$

$$I\left(\frac{1}{2},\frac{2\pi}{3} \right)=\int^{\frac{2\pi}{3}}_0 \theta \, \log \left( \sin \frac{\theta}{2} \right)\, d\theta = -\frac{4\pi}{9}\mathrm{Cl}_2\left( \frac{\pi}{3}\right)-\frac{2\pi^2 \log(2)}{9}+\frac{13}{9}\zeta(3)$$

By some manipulations we have

$$\int^{\frac{2\pi}{3}}_0 \theta \, \log \left( \sin \frac{\theta}{2} \right)\, d\theta =4\int^{\frac{\pi}{3}}_0 \theta \, \log \left( \sin \theta \right)\, d\theta =4\int^{\frac{\pi}{3}}_0 \theta \log(2) \, d\theta +4\int^{\frac{\pi}{3}}_0 \theta \, \log \left( \sin\frac{\theta}{2} \right)\, d\theta+4\int^{\frac{\pi}{3}}_0 \theta \, \log \left(\cos \frac{\theta}{2} \right)\, d\theta $$

Hence we have

$$\int^{\frac{\pi}{3}}_0 \theta \, \log \left(\cos \frac{\theta}{2} \right)\, d\theta = -\frac{\pi^2 \log(2)}{18}+\frac{1}{4} I \left( \frac{1}{2},\frac{2\pi}{3}\right)-I\left( \frac{1}{2},\frac{\pi}{3}\right) $$

A simplification could be done , finish it later .
 
DreamWeaver said:
$$\sum_{k=1}^{\infty} \frac{ \zeta(2k) }{k(k+1)\pi^{2k}} (at)^{2k+2} = \frac{a^2 t^2}{2}(2\log (at)-1) - 2a^2 \, I(a,t)$$

Woow DW , very nice ! I liked it .
 
So you're not that 'trig-shy' after all, Zaid... Good stuff! :D:D:D
 
we conclude this thread by pointing out the results we have $$\tag{1} \, \int^{\frac{\pi}{3}}_0 \theta \, \log \left(\cos \frac{\theta}{2} \right)\, d\theta = \frac{2\pi}{9}\mathrm{Cl}_2\left( \frac{\pi}{3}\right)-\frac{\pi^2 \log(2)}{18} -\frac{11}{36}\zeta(3)$$

$$\tag{2} \int^{\frac{\pi}{3}}_0 \theta \, \log \left( \sin \frac{\theta}{2} \right)\, d\theta = -\frac{\pi}{3}\mathrm{Cl}_2\left( \frac{\pi}{3}\right)-\frac{\pi^2 \log(2)}{18}+\frac{2}{3}\zeta(3)$$

$$\tag{3} \int^{\frac{2\pi}{3}}_0 \theta \, \log \left( \sin \frac{\theta}{2} \right)\, d\theta = -\frac{4\pi}{9}\mathrm{Cl}_2\left( \frac{\pi}{3}\right)-\frac{2\pi^2 \log(2)}{9}+\frac{13}{9}\zeta(3)$$

It seems that we cannot represent $$\mathrm{Cl}_2\left( \frac{\pi}{3}\right)$$ in terms of elementary functions. We could get more results by exploring the integrals with argument $$\frac{\pi}{2}$$. I think we shall not consider that because they can be derived easily. Ok that is it and we conclude this thread.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 12 ·
Replies
12
Views
12K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K