Well, using the Lewin's book using entries [4.18],[6.18] and [16.23] , I got the following
$$I\left(\frac{1}{2},\frac{\pi}{3} \right)=\int^{\frac{\pi}{3}}_0 \theta \, \log \left( \sin \frac{\theta}{2} \right)\, d\theta = -\frac{\pi}{3}\mathrm{Cl}_2\left( \frac{\pi}{3}\right)-\frac{\pi^2 \log(2)}{18}+\frac{2}{3}\zeta(3)$$
$$I\left(\frac{1}{2},\frac{2\pi}{3} \right)=\int^{\frac{2\pi}{3}}_0 \theta \, \log \left( \sin \frac{\theta}{2} \right)\, d\theta = -\frac{4\pi}{9}\mathrm{Cl}_2\left( \frac{\pi}{3}\right)-\frac{2\pi^2 \log(2)}{9}+\frac{13}{9}\zeta(3)$$
By some manipulations we have
$$\int^{\frac{2\pi}{3}}_0 \theta \, \log \left( \sin \frac{\theta}{2} \right)\, d\theta =4\int^{\frac{\pi}{3}}_0 \theta \, \log \left( \sin \theta \right)\, d\theta =4\int^{\frac{\pi}{3}}_0 \theta \log(2) \, d\theta +4\int^{\frac{\pi}{3}}_0 \theta \, \log \left( \sin\frac{\theta}{2} \right)\, d\theta+4\int^{\frac{\pi}{3}}_0 \theta \, \log \left(\cos \frac{\theta}{2} \right)\, d\theta $$
Hence we have
$$\int^{\frac{\pi}{3}}_0 \theta \, \log \left(\cos \frac{\theta}{2} \right)\, d\theta = -\frac{\pi^2 \log(2)}{18}+\frac{1}{4} I \left( \frac{1}{2},\frac{2\pi}{3}\right)-I\left( \frac{1}{2},\frac{\pi}{3}\right) $$
A simplification could be done , finish it later .