A generalized log sine integral .

Click For Summary

Discussion Overview

This thread focuses on finding a general formula for the integral $$I(a,t) = \int^t_0 x \log|\sin(a x )| \, dx$$, with participants exploring various special cases, transformations, and related integrals. The discussion includes theoretical aspects, mathematical reasoning, and specific evaluations.

Discussion Character

  • Exploratory, Technical explanation, Mathematical reasoning, Debate/contested

Main Points Raised

  • One participant proposes a special case evaluation of the integral for $$I(1,\frac{\pi}{2})$$, leading to a specific result involving the Riemann zeta function.
  • Another participant discusses the generalized form of the integral and introduces the Clausen function, suggesting a conjecture for $$I_0(t,1)$$ based on previous results.
  • A different approach is presented that involves a substitution and the use of the logarithmic sine series, leading to a series representation of the integral.
  • Further evaluations of the integral for specific values of $$a$$ and $$t$$ are provided, with results expressed in terms of Clausen functions and zeta functions.
  • Participants share manipulations and relationships between different integral evaluations, indicating potential connections and simplifications.
  • There are expressions of appreciation for contributions and insights shared among participants, indicating a collaborative atmosphere.
  • One participant notes the difficulty in expressing certain Clausen function values in terms of elementary functions, suggesting further exploration may be needed.

Areas of Agreement / Disagreement

Participants present multiple competing views and approaches to the integral, with no consensus reached on a single method or result. The discussion remains unresolved regarding the general formula and specific evaluations.

Contextual Notes

Participants note limitations in expressing certain results in terms of elementary functions and the dependency on specific assumptions regarding the parameters $$a$$ and $$t$$.

Who May Find This Useful

Readers interested in advanced mathematical integrals, particularly those involving logarithmic and trigonometric functions, as well as those studying special functions like the Clausen and Riemann zeta functions.

alyafey22
Gold Member
MHB
Messages
1,556
Reaction score
2
This thread will be dedicated to find a general formula for the integral
$$I(a,t) = \int^t_0 x \log|\sin(a x )| \, dx \,\,\,\,\, a,t>0$$​

This is not a tutorial . Any comments or attempts are always be welcomed .
 
Last edited:
Physics news on Phys.org
Re: A generalized log gamma integral .

We consider the special case

$$I\left(1,\frac{\pi}{2} \right) = \int^{\frac{\pi}{2}}_0 x \log|\sin(x )| \, dx =\int^{\frac{\pi}{2}}_0 x \log|2\sin(x )| -\frac{\pi^2}{8}\log(2)$$

Now we integrate by parts

$$
\begin{align}
\int^{\frac{\pi}{2}}_0 x \log|2\sin(x )| dx &=\frac{1}{2} \int^{\frac{\pi}{2}}_0 \mathrm{Cl}_2(2\theta)\, d\theta\\ &=\frac{1}{2} \int^{\frac{\pi}{2}}_0 \sum_{n=1}^{\infty}\frac{\sin(2n\theta)}{n^2}\, d\theta \\ &=-\frac{1}{4}\sum_{n=1}\frac{(-1)^n}{n^3}+\frac{1}{4}\sum_{n=1}\frac{1}{n^3}\\
&=\frac{7}{16}\zeta(3)
\end{align}
$$

Eventually we have

$$I\left(1,\frac{\pi}{2} \right) = \frac{7}{16}\zeta(3)-\frac{\pi^2}{8}\log(2)$$
 
Last edited:
Re: A generalized log gamma integral .

For the generalized form we need to find the general integral

$$I_0(t,1) = \int^t_0 \mathrm{Cl}_2(\theta) \, d\theta $$

It is easy to see that

$$\mathrm{Cl}(\theta) = \Im \left(\mathrm{Li}_2(e^{i\theta}) \right)$$

We already proved in separately that

$$\Im \left(\mathrm{Li}_2(e^{i\theta}) \right) = \frac{\mathrm{Li}_2(e^{i\theta}) -\mathrm{Li}_2(e^{-i\theta}) }{2i}$$

Now consider

$$\int^t_0 \mathrm{Li}_2(e^{i\theta})\, d\theta $$

Now we consider $t\in (0,2\pi]$ and let $z=e^{i\theta }$ hence $-i \log(z) = \theta $

$$-i\int^{e^{i\theta}}_{1} \frac{\mathrm{Li}_2(z)}{z} \, dz = -i \left(\mathrm{Li}_3(e^{i\theta}) -\zeta(3)\right) $$

Simalrily we have

$$\int^t_0 \mathrm{Li}_2(e^{-i\theta})\, d\theta =\int^{e^{-i\theta}}_{1} \frac{\mathrm{Li}_2(z)}{z} \, dz = i \left(\mathrm{Li}_3(e^{-i\theta}) -\zeta(3)\right)$$

Hence we have

$$\frac{-i \left(\mathrm{Li}_3(e^{i\theta}) -\zeta(3)\right)-i \left(\mathrm{Li}_3(e^{-i\theta}) -\zeta(3)\right)}{2i}=-\frac{\mathrm{Li}_3(e^{i\theta})+\mathrm{Li}_3(e^{-i\theta})}{2}+\zeta(3)$$

I conjucture that

$$I_0(t,1) = -\Re \left( \mathrm{Li}_3 (e^{it}) \right)+\zeta(3)$$

For the special case

$$I_0 \left(\frac{\pi}{2},1 \right)= \frac{7}{4} \zeta(3)$$

Gotta rush now , I hope I didn't make mistakes :) .
 
Last edited:
\begin{align}
I(a,t) = \int^t_0 x \log|\sin(a x )| \, dx &= \frac{1}{4a^2} \int^{2at}_0 x \log |\sin \frac{x}{2}|\, dx \\ &= \frac{1}{4a^2} \int^{2at}_0 x \log |2\sin \frac{x}{2}|\, dx-\frac{\log(2)}{2} t^2\\ &= -\frac{t}{2a}\mathrm{Cl}_2(2at) + \frac{1}{4a^2}\int^{2at}_0\mathrm{Cl}_2(x) dx-\frac{\log(2)}{2} t^2\\
&= -\frac{t}{2a}\mathrm{Cl}_2(2at)+\frac{1}{4a^2} \left( \zeta(3)-\Re \left( \mathrm{Li}_3 (e^{2i \, at}) \right) \right)-\frac{\log(2)}{2} t^2
\end{align}

Hence we have

$$I(a,t) = -\frac{t}{2a}\mathrm{Cl}_2(2at)+\frac{1}{4a^2} \left( \zeta(3)-\Re \left( \mathrm{Li}_3 (e^{2i \, at}) \right) \right)-\frac{\log(2)}{2} t^2 $$

Hence we have for $a=\frac{1}{2}$

$$I \left(\frac{1}{2},t \right) = -t\, \mathrm{Cl}_2(t)-\Re \left( \mathrm{Li}_3\, e^{i \, t} \right)-\frac{\log(2)}{2} t^2+\zeta(3)$$

or we have

$$I \left(\frac{1}{2},t \right) = -t\, \mathrm{Cl}_2(t)- \mathrm{Cl}_3(t)-\frac{\log(2)}{2} t^2+\zeta(3)$$
 
Here's a little something you might find interesting, Zaid... ;)Let's say you evaluate the function

$$I(a,t) = \int^t_0 x \log|\sin(a x )| \, dx $$

for a few particular values of the parameters $$a$$ and $$t$$, in terms of Clausen functions, etc. Next, perform the substitution $$y=ax$$ to obtain$$I(a,t) = \frac{1}{a^2}\int^{at}_0 y \log|\sin y| \, dx $$After that, provided that $$0 < at < \pi$$ - whereby you can also drop the absolute value sign in the integrand - you can apply the logsine series result:$$\log (\sin x) = \log x + \sum_{k=1}^{\infty}(-1)^k\frac{2^{2k-1} B_{2k}}{k (2k)!} x^{2k} \quad [ \text{valid for} \, 0 < x < \pi]$$to get$$I(a,t) = \frac{1}{a^2}\int^{at}_0 x\log x \,dx + \frac{1}{a^2} \sum_{k=1}^{\infty}(-1)^k\frac{2^{2k-1} B_{2k}}{k (2k)!} \int_0^{at} x^{2k+1}\,dx=$$$$\frac{t^2}{4}(2\log (at)-1) + \frac{1}{a^2} \sum_{k=1}^{\infty}(-1)^k\frac{2^{2k-1} B_{2k}}{k (2k)!} \int_0^{at} x^{2k+1}\,dx=$$$$\frac{t^2}{4}(2\log (at)-1) + \frac{1}{a^2} \sum_{k=1}^{\infty}(-1)^k\frac{2^{2k-1} B_{2k}}{k (2k)! (2k+2) } (at)^{2k+2} $$
Next, take the classic Zeta function result$$\zeta(2k)=(-1)^{k+1} \frac{(2\pi)^{2k} B_{2k}}{2(2k)!} \quad k \in \mathbb{Z} \ge 1$$and invert the terms to express the Bernoulli numbers as$$B_{2k}=2(-1)^{k+1}\frac{(2k)!}{(2\pi)^{2k}} \zeta(2k)$$Substitute this back into the series result to obtain$$I(a,t) = \frac{t^2}{4}(2\log (at)-1) +$$

$$ \frac{1}{a^2} \sum_{k=1}^{\infty}(-1)^k\frac{2^{2k-1} }{k (2k)! (2k+2) } \left[ 2(-1)^{k+1}\frac{(2k)!}{(2\pi)^{2k}} \zeta(2k) \right] (at)^{2k+2} =$$$$\frac{t^2}{4}(2\log (at)-1) - \frac{1}{2a^2} \sum_{k=1}^{\infty} \frac{ \zeta(2k) }{k(k+1)\pi^{2k}} (at)^{2k+2}$$Finally, use the explicit evaluations you have of the function $$I(a,t)$$ - provided that $$0 < at < \pi$$ - and you have a closed form evaluation for the Zeta Series above:
$$\sum_{k=1}^{\infty} \frac{ \zeta(2k) }{k(k+1)\pi^{2k}} (at)^{2k+2} = \frac{a^2 t^2}{2}(2\log (at)-1) - 2a^2 \, I(a,t)$$

(Heidy)(Heidy)(Heidy)NB. Made a bit of a typo in there to start with, but hopefully it's all fixed now... Main thing is the process, anyhoo lol
 
Last edited:
Well, using the Lewin's book using entries [4.18],[6.18] and [16.23] , I got the following

$$I\left(\frac{1}{2},\frac{\pi}{3} \right)=\int^{\frac{\pi}{3}}_0 \theta \, \log \left( \sin \frac{\theta}{2} \right)\, d\theta = -\frac{\pi}{3}\mathrm{Cl}_2\left( \frac{\pi}{3}\right)-\frac{\pi^2 \log(2)}{18}+\frac{2}{3}\zeta(3)$$

$$I\left(\frac{1}{2},\frac{2\pi}{3} \right)=\int^{\frac{2\pi}{3}}_0 \theta \, \log \left( \sin \frac{\theta}{2} \right)\, d\theta = -\frac{4\pi}{9}\mathrm{Cl}_2\left( \frac{\pi}{3}\right)-\frac{2\pi^2 \log(2)}{9}+\frac{13}{9}\zeta(3)$$

By some manipulations we have

$$\int^{\frac{2\pi}{3}}_0 \theta \, \log \left( \sin \frac{\theta}{2} \right)\, d\theta =4\int^{\frac{\pi}{3}}_0 \theta \, \log \left( \sin \theta \right)\, d\theta =4\int^{\frac{\pi}{3}}_0 \theta \log(2) \, d\theta +4\int^{\frac{\pi}{3}}_0 \theta \, \log \left( \sin\frac{\theta}{2} \right)\, d\theta+4\int^{\frac{\pi}{3}}_0 \theta \, \log \left(\cos \frac{\theta}{2} \right)\, d\theta $$

Hence we have

$$\int^{\frac{\pi}{3}}_0 \theta \, \log \left(\cos \frac{\theta}{2} \right)\, d\theta = -\frac{\pi^2 \log(2)}{18}+\frac{1}{4} I \left( \frac{1}{2},\frac{2\pi}{3}\right)-I\left( \frac{1}{2},\frac{\pi}{3}\right) $$

A simplification could be done , finish it later .
 
DreamWeaver said:
$$\sum_{k=1}^{\infty} \frac{ \zeta(2k) }{k(k+1)\pi^{2k}} (at)^{2k+2} = \frac{a^2 t^2}{2}(2\log (at)-1) - 2a^2 \, I(a,t)$$

Woow DW , very nice ! I liked it .
 
So you're not that 'trig-shy' after all, Zaid... Good stuff! :D:D:D
 
we conclude this thread by pointing out the results we have $$\tag{1} \, \int^{\frac{\pi}{3}}_0 \theta \, \log \left(\cos \frac{\theta}{2} \right)\, d\theta = \frac{2\pi}{9}\mathrm{Cl}_2\left( \frac{\pi}{3}\right)-\frac{\pi^2 \log(2)}{18} -\frac{11}{36}\zeta(3)$$

$$\tag{2} \int^{\frac{\pi}{3}}_0 \theta \, \log \left( \sin \frac{\theta}{2} \right)\, d\theta = -\frac{\pi}{3}\mathrm{Cl}_2\left( \frac{\pi}{3}\right)-\frac{\pi^2 \log(2)}{18}+\frac{2}{3}\zeta(3)$$

$$\tag{3} \int^{\frac{2\pi}{3}}_0 \theta \, \log \left( \sin \frac{\theta}{2} \right)\, d\theta = -\frac{4\pi}{9}\mathrm{Cl}_2\left( \frac{\pi}{3}\right)-\frac{2\pi^2 \log(2)}{9}+\frac{13}{9}\zeta(3)$$

It seems that we cannot represent $$\mathrm{Cl}_2\left( \frac{\pi}{3}\right)$$ in terms of elementary functions. We could get more results by exploring the integrals with argument $$\frac{\pi}{2}$$. I think we shall not consider that because they can be derived easily. Ok that is it and we conclude this thread.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 12 ·
Replies
12
Views
12K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K