I am afraid it is neither a) nor b), so I doubt if I used the term "dual" correctly. But it is about the dual notions ker and coker. This is what I know of the solution:We have two R-maps $f:A\to B$ and $g:B\to C$ of left R-modules.
And we have an isomorphism $A\cong \ker g$ "induced by f" .
Then prove that the sequence $S:0\to A\to _f B\to _g C$ is left-exact, i.e.,
$\mbox{im} f = \ker g$ and $f$ is injective.Proof:
Let $\overline f : A\to \ker g : a\mapsto f(a)$ be the isomorphism between $A$ and $\ker g$ induced by f. This implies that $\mbox{im }f \subset \ker g$ and the well-definition of $\overline f$ (because $f$ is well-defined).
Subsequently, we have:
$x\in \ker g \Leftrightarrow \exists (a\in A) \mbox{ } \overline f (a) = f(a) = x \Leftrightarrow x\in \mbox{im }f$, i.e., $\mbox{im }f = \ker g$.
And:
$x\in \ker f \Rightarrow x\in \ker \overline f \Rightarrow x=0$, i.e., $f$ is injective. $\Box$
Your comments, please.