MHB A little problem on exact sequences, part 2.

  • Thread starter Thread starter steenis
  • Start date Start date
  • Tags Tags
    Sequences
steenis
Messages
312
Reaction score
18
Part 1 of this little problem is here: http://mathhelpboards.com/linear-abstract-algebra-14/little-problem-exact-sequences-19368.html.

This is part 2: who can formulate and prove the dual statement?
 
Physics news on Phys.org
You should clarify what you mean by "dual", which might mean:

a) The statement obtained by "reversing all the arrows", or

b) the statement obtained by considering the "dual modules" $\text{Hom}_R(-,R)$.
 
I am afraid it is neither a) nor b), so I doubt if I used the term "dual" correctly. But it is about the dual notions ker and coker. This is what I know of the solution:We have two R-maps $f:A\to B$ and $g:B\to C$ of left R-modules.
And we have an isomorphism $A\cong \ker g$ "induced by f" .
Then prove that the sequence $S:0\to A\to _f B\to _g C$ is left-exact, i.e.,
$\mbox{im} f = \ker g$ and $f$ is injective.Proof:
Let $\overline f : A\to \ker g : a\mapsto f(a)$ be the isomorphism between $A$ and $\ker g$ induced by f. This implies that $\mbox{im }f \subset \ker g$ and the well-definition of $\overline f$ (because $f$ is well-defined).
Subsequently, we have:
$x\in \ker g \Leftrightarrow \exists (a\in A) \mbox{ } \overline f (a) = f(a) = x \Leftrightarrow x\in \mbox{im }f$, i.e., $\mbox{im }f = \ker g$.
And:
$x\in \ker f \Rightarrow x\in \ker \overline f \Rightarrow x=0$, i.e., $f$ is injective. $\Box$

Your comments, please.
 
Last edited:
steenis said:
I am afraid it is neither a) nor b), so I doubt if I used the term "dual" correctly. But it is about the dual notions ker and coker. This is what I know of the solution:We have two R-maps $f:A\to B$ and $g:B\to C$ of left R-modules.
And we have an isomorphism $A\cong \ker g$ "induced by f" .
Then prove that the sequence $S:0\to A\to _f B\to _g C$ is left-exact, i.e.,
$\mbox{im} f = \ker g$ and $f$ is injective.Proof:
Let $\overline f : A\to \ker g : a\mapsto f(a)$ be the isomorphism between $A$ and $\ker g$ induced by f. This implies that $\mbox{im }f \subset \ker g$ and the well-definition of $\overline f$ (because $f$ is well-defined).
Subsequently, we have:
$x\in \ker g \Leftrightarrow \exists (a\in A) \mbox{ } \overline f (a) = f(a) = x \Leftrightarrow x\in \mbox{im }f$, i.e., $\mbox{im }f = \ker g$.
And:
$x\in \ker f \Rightarrow x\in \ker \overline f \Rightarrow x=0$, i.e., $f$ is injective. $\Box$

Your comments, please.
That is "dual" as in a) of my previous post. Note that in part 1), $B/(\text{im }f)$ *is* $\text{coker }f$, so that the dual of the diagram:

$A \stackrel{f}{\to}B \stackrel{g}{\to}C \cong \text{coker }f \to 0$ is:

$0 \to C\cong \text{ker }k\stackrel{h}{\to}B\stackrel{k}{\to}A$

(I have labelled the reverse arrows $C \to B$ and $B \to A$ by $h$ and $k$ to avoid thinking of them as "inverse functions"), with the isomorphisms *induced* by the arrow just before on part 1), and just after in part 2).
 
Thank you, Deveno, very clear.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top