I A math confusion in deriving the curl of magnetic field from Biot-Savart

AI Thread Summary
The discussion centers on a confusion regarding the derivation of the curl of the magnetic field from the Biot-Savart law as presented in Griffiths' "Introduction to Electrodynamics." A specific concern is raised about why the second term in equation 5.55 is zero, particularly when the current density J approaches infinity. The poster seeks clarification on how to demonstrate that the surface integral also results in zero under these conditions. The inquiry highlights a desire for a clear explanation to resolve this mathematical confusion. Overall, the thread emphasizes the need for understanding the behavior of integrals in electromagnetic theory.
Brian Tsai
Messages
1
Reaction score
1
TL;DR Summary
Why the surface integral is 0 even the J itself extends to infinity (as in the case of an infinite straight wire).
I am recently reading "Introduction to Electrodynamics, Forth Edition, David J. Griffiths " and have a problem with the derive of the curl of a magnetic field from Biot-Savart law. The images of pages (p.232~p233) are in the following:

螢幕擷取畫面 2023-04-03 133932.png

螢幕擷取畫面 2023-04-03 134140.png

The second term in 5.55(page 233) is 0. I had known the reason in case of that the current density declined to 0 on the surface. My question is how to prove the surface integral will also be 0 when J extends to infinite(red block).

P.S. : This is my first time asking a question in English, and I had done my best to decrease the improper use of English. I sincerely hope that anyone who notices my post can answer my confusion and don't be mad at my terrible use in English
 
Thread 'Inducing EMF Through a Coil: Understanding Flux'
Thank you for reading my post. I can understand why a change in magnetic flux through a conducting surface would induce an emf, but how does this work when inducing an emf through a coil? How does the flux through the empty space between the wires have an effect on the electrons in the wire itself? In the image below is a coil with a magnetic field going through the space between the wires but not necessarily through the wires themselves. Thank you.
Thread 'Griffith, Electrodynamics, 4th Edition, Example 4.8. (Second part)'
I am reading the Griffith, Electrodynamics book, 4th edition, Example 4.8. I want to understand some issues more correctly. It's a little bit difficult to understand now. > Example 4.8. Suppose the entire region below the plane ##z=0## in Fig. 4.28 is filled with uniform linear dielectric material of susceptibility ##\chi_e##. Calculate the force on a point charge ##q## situated a distance ##d## above the origin. In the page 196, in the first paragraph, the author argues as follows ...
Back
Top