I A math confusion in deriving the curl of magnetic field from Biot-Savart

AI Thread Summary
The discussion centers on a confusion regarding the derivation of the curl of the magnetic field from the Biot-Savart law as presented in Griffiths' "Introduction to Electrodynamics." A specific concern is raised about why the second term in equation 5.55 is zero, particularly when the current density J approaches infinity. The poster seeks clarification on how to demonstrate that the surface integral also results in zero under these conditions. The inquiry highlights a desire for a clear explanation to resolve this mathematical confusion. Overall, the thread emphasizes the need for understanding the behavior of integrals in electromagnetic theory.
Brian Tsai
Messages
1
Reaction score
1
TL;DR Summary
Why the surface integral is 0 even the J itself extends to infinity (as in the case of an infinite straight wire).
I am recently reading "Introduction to Electrodynamics, Forth Edition, David J. Griffiths " and have a problem with the derive of the curl of a magnetic field from Biot-Savart law. The images of pages (p.232~p233) are in the following:

螢幕擷取畫面 2023-04-03 133932.png

螢幕擷取畫面 2023-04-03 134140.png

The second term in 5.55(page 233) is 0. I had known the reason in case of that the current density declined to 0 on the surface. My question is how to prove the surface integral will also be 0 when J extends to infinite(red block).

P.S. : This is my first time asking a question in English, and I had done my best to decrease the improper use of English. I sincerely hope that anyone who notices my post can answer my confusion and don't be mad at my terrible use in English
 
This is from Griffiths' Electrodynamics, 3rd edition, page 352. I am trying to calculate the divergence of the Maxwell stress tensor. The tensor is given as ##T_{ij} =\epsilon_0 (E_iE_j-\frac 1 2 \delta_{ij} E^2)+\frac 1 {\mu_0}(B_iB_j-\frac 1 2 \delta_{ij} B^2)##. To make things easier, I just want to focus on the part with the electrical field, i.e. I want to find the divergence of ##E_{ij}=E_iE_j-\frac 1 2 \delta_{ij}E^2##. In matrix form, this tensor should look like this...
Thread 'Applying the Gauss (1835) formula for force between 2 parallel DC currents'
Please can anyone either:- (1) point me to a derivation of the perpendicular force (Fy) between two very long parallel wires carrying steady currents utilising the formula of Gauss for the force F along the line r between 2 charges? Or alternatively (2) point out where I have gone wrong in my method? I am having problems with calculating the direction and magnitude of the force as expected from modern (Biot-Savart-Maxwell-Lorentz) formula. Here is my method and results so far:- This...
Back
Top