I A problem of completeness of a metric space

facenian
Messages
433
Reaction score
25
TL;DR
This seems to be a contradictory topology problem
Hi, I found this problem in Munkres' topology book, and it seems to be contradictory:
Let X be a metric space.
(a) Suppose that for some ϵ>0, every ϵ-Ball in X has compact closure. Show that X is complete.
(b) Suppose that for each x\in X there is an \epsilon>0 such as the ball B(x,\epsilon) has compact closure. Show by means of an example that X need not be complete.

I believe that (a) can be proved. But then, (b) must be impossible to prove. Am I crazy? or it is a typo. Any help will be much appreciated.
 
Physics news on Phys.org
facenian said:
Summary:: This seems to be a contradictory topology problem

(a) Suppose that for some ϵ>0, every ϵ-Ball in X has compact closure.
(b) Suppose that for each x\in X there is an \epsilon>0 such as the ball B(x,\epsilon) has compact closure.
a) ##\exists \epsilon## such that ##\forall x## ,,,

b) ##\forall x##, ##\exists \epsilon##

Note that in b), each ##\epsilon## could depend on ##x##.
 
  • Like
Likes PeroK and facenian
I think ##\{1,1/2,1/3,1/4,1/5,...\}## is a counterexample for part b.
 
  • Like
Likes PeroK and facenian
I think you are both, George and Infrared, right. Thank you very much guys.
 
I posted this question on math-stackexchange but apparently I asked something stupid and I was downvoted. I still don't have an answer to my question so I hope someone in here can help me or at least explain me why I am asking something stupid. I started studying Complex Analysis and came upon the following theorem which is a direct consequence of the Cauchy-Goursat theorem: Let ##f:D\to\mathbb{C}## be an anlytic function over a simply connected region ##D##. If ##a## and ##z## are part of...