# A "Proof Formula" for all maths or formal logic?

• A
• moriheru
moriheru
I was wondering whether or not there could be a "master formula" . What I mean by a master formula is, maybe not even a formula, some mathematical expression that would allow mathematicians to prove statements simply by plugging in some numbers into a formula.

So I guess in a way a I am talking about a " proof formula" . To be more precise: shouldn't it be possible to find for example by interpolation, a formula that relates the validity of a theorems statement to its Gödel number. I am aware that mathematics is a vast and complicated language, but would this be possible for first order logic or other simpler formal theories .

I believe the reverse process is certainly easier though. I can easily set up a formal theory in which I choose my axioms and inference rules in such a way that for example every theorem with a Gödel number divisible by 17 and 2 is true.

I am aware that I have used the term maths in a rather loose fashion. I am no expert, but there surly is no one mathematical language. Topology may have different rules than Order theory and hence be a different formal theory. Additionally, what about the incompleteness of forma, theory such as arithmetic. Any thoughts...

Last edited by a moderator: