A query about this electrical circuit symbol

Click For Summary
The epsilon symbol (ε) represents ElectroMotive Force (emf), which is often used to label voltage sources like batteries. There is a distinction between terminal potential difference (V) and emf (ε), particularly when considering internal resistance in voltage sources. When current flows, the terminal voltage (V) is less than the emf (ε) due to internal resistance, but for an ideal voltage source with zero internal resistance, they are equal. The correct notation for emf is actually the script E (ℰ), which some refer to as a 'curly E.' Understanding these differences is crucial for accurately analyzing electrical circuits.
ellieee
Messages
78
Reaction score
6
Homework Statement
I'm not sure what this symbol means
Relevant Equations
V1 = R1 / R1+R2+R3 x "inverted 3"
CamScanner 05-11-2021 12.11_edit_7893197620670.jpg
 
Last edited by a moderator:
Physics news on Phys.org
The epsilon symbol (##\epsilon##) stands for "emf" or ElectroMotive Force. I think it's a bit of a technicality to name voltage sources like batteries with ##\epsilon## while potential difference generated across other components are labeled as Voltage (V).
 
  • Like
Likes Steve4Physics, ellieee and Delta2
phinfinity said:
The epsilon symbol (##\epsilon##) stands for "emf" or ElectroMotive Force. I think it's a bit of a technicality to name voltage sources like batteries with ##\epsilon## while potential difference generated across other components are labeled as Voltage (V).
I know I'm being pedantic but can I add:

1) It is ##\mathscr E## not an epsilon (##\epsilon##). The symbol is a 'script E'. My school physics teacher used to call it a 'curly E'. (To get the symbol with Latex, use \mathscr E.)

2) There is an important difference between the voltage (more correctly terminal pd), V, of a voltage-source and the source's emf ##\mathscr E##.

If the voltage-source has some internal resistance, then when a current flows V is smaller than ##\mathscr E##. But for an ideal voltage-source (zero internal resistance) V and ##\mathscr E## are the same value. Most simple circuit problems assume an ideal voltage-source; in that case you don't need to worry about the difference.
 
  • Like
Likes Delta2 and ellieee
If have close pipe system with water inside pressurized at P1= 200 000Pa absolute, density 1000kg/m3, wider pipe diameter=2cm, contraction pipe diameter=1.49cm, that is contraction area ratio A1/A2=1.8 a) If water is stationary(pump OFF) and if I drill a hole anywhere at pipe, water will leak out, because pressure(200kPa) inside is higher than atmospheric pressure (101 325Pa). b)If I turn on pump and water start flowing with with v1=10m/s in A1 wider section, from Bernoulli equation I...

Similar threads

  • · Replies 3 ·
Replies
3
Views
934
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 42 ·
2
Replies
42
Views
5K
Replies
1
Views
852
Replies
14
Views
634
Replies
3
Views
798
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K