A query about this electrical circuit symbol

Click For Summary
SUMMARY

The epsilon symbol (##\mathscr E##) represents ElectroMotive Force (emf) in electrical circuits, distinguishing it from voltage (V) which refers to the potential difference across components. The discussion emphasizes that while batteries are labeled with ##\mathscr E##, the voltage across them can differ due to internal resistance. For ideal voltage sources with zero internal resistance, the values of V and ##\mathscr E## are equivalent. Understanding this distinction is crucial for accurately analyzing circuit behavior.

PREREQUISITES
  • Understanding of electrical circuit symbols
  • Familiarity with ElectroMotive Force (emf)
  • Knowledge of voltage and potential difference concepts
  • Basic principles of internal resistance in voltage sources
NEXT STEPS
  • Research the differences between ideal and non-ideal voltage sources
  • Learn about internal resistance and its effects on circuit performance
  • Explore the use of LaTeX for typesetting electrical symbols
  • Study practical applications of ElectroMotive Force in circuit design
USEFUL FOR

Students of electrical engineering, educators teaching circuit theory, and professionals involved in circuit design and analysis will benefit from this discussion.

ellieee
Messages
78
Reaction score
6
Homework Statement
I'm not sure what this symbol means
Relevant Equations
V1 = R1 / R1+R2+R3 x "inverted 3"
CamScanner 05-11-2021 12.11_edit_7893197620670.jpg
 
Last edited by a moderator:
Physics news on Phys.org
The epsilon symbol (##\epsilon##) stands for "emf" or ElectroMotive Force. I think it's a bit of a technicality to name voltage sources like batteries with ##\epsilon## while potential difference generated across other components are labeled as Voltage (V).
 
  • Like
Likes Steve4Physics, ellieee and Delta2
phinfinity said:
The epsilon symbol (##\epsilon##) stands for "emf" or ElectroMotive Force. I think it's a bit of a technicality to name voltage sources like batteries with ##\epsilon## while potential difference generated across other components are labeled as Voltage (V).
I know I'm being pedantic but can I add:

1) It is ##\mathscr E## not an epsilon (##\epsilon##). The symbol is a 'script E'. My school physics teacher used to call it a 'curly E'. (To get the symbol with Latex, use \mathscr E.)

2) There is an important difference between the voltage (more correctly terminal pd), V, of a voltage-source and the source's emf ##\mathscr E##.

If the voltage-source has some internal resistance, then when a current flows V is smaller than ##\mathscr E##. But for an ideal voltage-source (zero internal resistance) V and ##\mathscr E## are the same value. Most simple circuit problems assume an ideal voltage-source; in that case you don't need to worry about the difference.
 
  • Like
Likes Delta2 and ellieee
The book claims the answer is that all the magnitudes are the same because "the gravitational force on the penguin is the same". I'm having trouble understanding this. I thought the buoyant force was equal to the weight of the fluid displaced. Weight depends on mass which depends on density. Therefore, due to the differing densities the buoyant force will be different in each case? Is this incorrect?

Similar threads

  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 42 ·
2
Replies
42
Views
5K
Replies
1
Views
901
Replies
14
Views
701
Replies
3
Views
855
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K