B A question regarding Heliocentric Latitude

  • B
  • Thread starter Thread starter Mikael17
  • Start date Start date
AI Thread Summary
The discussion centers on the heliocentric latitude of planets, specifically the highest and lowest positions of Earth relative to the Sun's equator, occurring in March and September, respectively. It questions whether these points are fixed or if they exhibit movement similar to Mercury's perihelion precession. The latitudinal movement is influenced by the planets' tilted orbital planes, while the rotation axis is independent of these planes, leading to asynchronous timing of effects. The periods of these movements are complex, described by polynomials with numerous coefficients. Apsidal precession, which affects the long axis of a planet's orbit, results from various phenomena, with some aspects only fully understood in the 20th century.
Mikael17
Messages
43
Reaction score
5
TL;DR Summary
Are lower / higher points of Heliocentric Latitude always taking place same time ervery year.?
By following the link below you can see (an animation) showing how the planets that orbiting the Sun each year have their lowest / highest position (relative to the Sun's equator).

The lowest point of the Earth is seen every year in the month of September, (and the highest position of the Earth occurs in March).

My question is whether these "points" over time are immovably fixed, or whether they "move" / "rotate" - in the same way that perihelion also moves (for example Mercury's perihelion precession).

If these "points" move over time, what is the reason and how much do they move?



1712483306396.png
 
Astronomy news on Phys.org
Mikael17 said:
The lowest point of the Earth is seen every year in the month of September, (and the highest position of the Earth occurs in March).

My question is whether these "points" over time are immovably fixed, or whether they "move" / "rotate" - in the same way that perihelion also moves (for example Mercury's perihelion precession).

If these "points" move over time, what is the reason and how much do they move?
The plane of each orbit is close to the ecliptic. The latitudinal movement modelled in the graphics is a function of the planet's movement on those tilted orbital planes.

The axis of planet rotation is independent of the planet's orbital plane about the Sun. For that reason, the timing of the two effects will be asynchronous.

The periods are not so much determined, as they are described by polynomials having hundreds of complex coefficients.

The year is different for each planet. Apsidal precession is the rotation of the long axis of the orbit in the planet's orbital plane.
https://en.wikipedia.org/wiki/Apsidal_precession
Cause: "The apsidal precessions of the Earth and other planets are the result of a plethora of phenomena, of which a part remained difficult to account for until the 20th century when the last unidentified part of Mercury's precession was precisely explained. "
 
TL;DR Summary: In 3 years, the Square Kilometre Array (SKA) telescope (or rather, a system of telescopes) should be put into operation. In case of failure to detect alien signals, it will further expand the radius of the so-called silence (or rather, radio silence) of the Universe. Is there any sense in this or is blissful ignorance better? In 3 years, the Square Kilometre Array (SKA) telescope (or rather, a system of telescopes) should be put into operation. In case of failure to detect...
Thread 'Could gamma-ray bursts have an intragalactic origin?'
This is indirectly evidenced by a map of the distribution of gamma-ray bursts in the night sky, made in the form of an elongated globe. And also the weakening of gamma radiation by the disk and the center of the Milky Way, which leads to anisotropy in the possibilities of observing gamma-ray bursts. My line of reasoning is as follows: 1. Gamma radiation should be absorbed to some extent by dust and other components of the interstellar medium. As a result, with an extragalactic origin, fewer...
This hypothesis of scientists about the origin of the mysterious signal WOW seems plausible only on a superficial examination. In fact, such a strong coherent radiation requires a powerful initiating factor, and the hydrogen atoms in the cloud themselves must be in an overexcited state in order to respond instantly. If the density of the initiating radiation is insufficient, then the atoms of the cloud will not receive it at once, some will receive it earlier, and some later. But then there...
Back
Top