No, it doesn't lead to Bell's inequalities. The joint assumption of both
(1) ##A(\lambda,\vec a,\vec b) = A(\lambda,\vec a)##, ##B(\lambda,\vec a,\vec b) = B(\lambda,\vec b)##
(2) ##P(\lambda,\vec a,\vec b) = P(\lambda)##
leads to Bell's inequality. In a hidden variable theory, we can deny (1), which leads to non-locality or we can deny (2), which (according to Bell) leads to superdeterminism, or we can of course deny both. Apparently, Bohmian mechanics does not only violate (1), but it also violates (2), which would mean that it is not just non-local, but also superdeterministic (according to Bell).By using an expression for the correlations, given by ##\left<A(\vec a) B(\vec b)\right> = \int A(\lambda,\vec a) B(\lambda,\vec b) P(\lambda, \vec a, \vec b)\mathrm d\lambda##, we can in principle write down a local hidden variable theory. The usual argument is that because it violates (2), it must be superdeterministic. I don't understand, why this argument does not equally apply to Bohmian mechanics, if BM violates (2), which it does.