MHB A whole function approximating polynomials

LWRS
Messages
1
Reaction score
0
Given a series of polynomials $$p_{n}$$ and a series of open, non-intersecting sets $$V_{n} \subset \mathbb{C}$$ show that there exists a function $$g\in \mathcal{O}(\mathbb{C})$$ such that $$lim_{n \rightarrow \infty} sup_{z \in V_{n}} |g(z)-p_{n}(z)|=0$$.

Normally the approximation goes the other way around so I'm not sure what to do here.
 
Physics news on Phys.org
Let g(z) denote the function we want to construct. We can use a technique known as the Weierstrass Approximation Theorem to construct g(z). This theorem states that if V_{n} is compact and p_{n} is continuous, then there exists a sequence of polynomials f_{n} such that lim_{n \rightarrow \infty} sup_{z \in V_{n}} |f_{n}(z)-p_{n}(z)|=0.Now, we can define g(z) as the uniform limit of the sequence of polynomials {f_{n}(z)}, i.e., g(z)=lim_{n \rightarrow \infty} f_{n}(z). Since f_{n}(z) converges uniformly to p_{n}(z), it follows that lim_{n \rightarrow \infty} sup_{z \in V_{n}} |g(z)-p_{n}(z)|=0. Hence, we have constructed a function g(z) which satisfies the desired condition.
 
I posted this question on math-stackexchange but apparently I asked something stupid and I was downvoted. I still don't have an answer to my question so I hope someone in here can help me or at least explain me why I am asking something stupid. I started studying Complex Analysis and came upon the following theorem which is a direct consequence of the Cauchy-Goursat theorem: Let ##f:D\to\mathbb{C}## be an anlytic function over a simply connected region ##D##. If ##a## and ##z## are part of...

Similar threads

Replies
2
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
32
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 38 ·
2
Replies
38
Views
4K
  • · Replies 11 ·
Replies
11
Views
2K