What is the derivation of the ABC magnetic field components?

Click For Summary
SUMMARY

The derivation of the ABC magnetic field components is defined by the equations B1=A*sin(z)+C*cos(y), B2=B*sin(x)+A*cos(z), and B3=C*sin(y)+B*cos(x). The divergence of the magnetic field, expressed as ∇·B=0, indicates a force-free helical steady-state solution of Euler's equation in fluid dynamics. This solution can be analyzed by setting B=0 and C=0 to observe the behavior of A, which generates a spiraling magnetic field in the x-y plane. The derivation utilizes the equation ∇×B=kB, leading to a consistent solution when substituting the Biot-Savart law from Maxwell's equations.

PREREQUISITES
  • Understanding of vector calculus, specifically divergence and curl operations.
  • Familiarity with Maxwell's equations, particularly the Biot-Savart law.
  • Knowledge of Euler's equation in fluid dynamics.
  • Basic concepts of magnetic field theory and dynamics.
NEXT STEPS
  • Study the derivation of the Biot-Savart law in the context of electromagnetic fields.
  • Learn about the implications of force-free magnetic fields in astrophysics.
  • Explore the application of Poincaré maps and Lyapunov exponents in dynamical systems.
  • Investigate the relationship between magnetic fields and kinetic dynamos in solar physics.
USEFUL FOR

Physicists, astrophysicists, and engineers working with magnetic field theory, particularly those interested in fluid dynamics and electromagnetic applications in astrophysical contexts.

Nakul Aggarwal
Messages
2
Reaction score
0
Can somebody please post the derivation of the ABC magnetic field components whose magnetic field components in the three cartesian directions(B1, B2, B3) are given by the following:
B1=A*sin(z)+C*cos(y)
B2=B*sin(x)+A*cos(z)
B3=C*sin(y)+B*cos(x)
 
Physics news on Phys.org
An interesting magnetic field pattern. I'm going to presume this is not a homework problem because it would then belong in the homework section. ## \\ ## The first thing I observed is that ## \nabla \cdot \vec{B}=0 ##. ## \\ ## To analyze what it is, you can set ## B=0 ## and ## C=0 ##, and see what ## A ## does by itself. The ## A ## term causes a magnetic field with constant amplitude, (amplitude =## A ##), in the x-y plane that spirals around as ## z ## is increased. The cycle of the spiral for ## z ## is ## \Delta z=\frac{1}{2 \pi } ##. The ## B ## and ## C ## terms behave similarly, and the results are superimposed, (with ## B ## acting in the y-z plane, and ## C ## in the x-z plane). Perhaps someone else can see something else of interest. One item is it seems to have infinite extent, and does not appear to represent a real physical system.
 
True, it is a force-free helical steady-state solution of the Euler's equation in fluid dynamics. It does represent a physical situation as if you set A=1,B=1 and C=1, it represents a kinetic dynamo and this field is present in the solar corona as well. It has a regular and chaotic trajectory after plotting its Poincare map and calculating its Liapunov Exponents. I just need how it is derived from ##\nabla\cross\vec{B}=constant*\vec{B}## and using Euler's Equation
 
Given ## \nabla \times \vec{B}=k \, \vec{B} ##, this differential equation does have an integral solution. Sometimes there are additional homogeneous solutions that need to be added, but it is basically of the Biot-Savart form: Maxwell's equation ## \nabla \times \vec{B} =\mu_o \vec{J} ## has the Biot-Savart solution: ## \vec{B}(\vec{x})=\frac{\mu_o}{4 \pi} \int \frac{\vec{J}(\vec{x'}) \times (\vec{x}-\vec{x'})}{|\vec{x}-\vec{x'}|^3} \, d^3x' ##. ## \\ ## If your last equation in the previous post is correct, it should be possible to at least show that the solution is consistent, i.e. if you replace ## \mu_o \vec{J} ## by ## k \vec{B} ##, with the form as provided, you should get consistency on both sides. ## \\ ## Edit: The better way would be to simply put in the solution of ## \nabla \times \vec{B}=k \, \vec{B} ##, and solve for ## k ##. The ## A ## term satisfies it for ## k=1 ## , and I believe the ## B ## and ## C ## do also. Starting with ## \nabla \times \vec{B}=\vec{B} ##, it really is only necessary to show that your solution satisfies the differential equation. It is unnecessary to derive anything.
 
Last edited:

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 27 ·
Replies
27
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 14 ·
Replies
14
Views
1K