A About calculating a fundamental group

aalma
Messages
46
Reaction score
1
What is the way to compute ##\pi_1(PGL_2(R))##?
Is it related to defining an action of ##PGL_2(R)## on ##S^3##?

it would be helpful if you can provide me with relevant information regarding this
 
Physics news on Phys.org
There is a bundle ##\mathbb{R}^\times\to GL_n(\mathbb{R})\to PGL_n(\mathbb{R})## where ##\mathbb{R}^\times## is the subgroup of nonzero scalar matrices. The identity component of the fiber is contractible, so ##PGL_n(\mathbb{R})## and ##GL_n(\mathbb{R})## has the same homotopy groups in positive degrees, and also the identity component of ##GL_n(\mathbb{R})## is homotopy equivalent to ##SO(n;\mathbb{R})## by performing Gram-Schmidt on the columns.

So in this case, ##\pi_1(PGL_2(\mathbb{R}))\cong\pi_1(SO(2;\mathbb{R}))\cong \pi_1(S^1)\cong\mathbb{Z}.##
 
Last edited:
  • Like
Likes malawi_glenn, Euge and aalma
Thanks:)
Is the idea here to move from the fibration you first mentioned to a long exact sequence, knowing that ##\pi_0(GL_2(R))=\pi_0(SO_2(R))##?
When saying "The identity component of the fiber is contractible" to what fiber are you referring and then you mean that ##\pi_1(GL_2(R))=\pi_1(PGL_2(R))##?
 
I'm a bit confused by the conditions on the existence of coordinate basis given by Frobenius's theorem. Namely, let's take a n-dimensional smooth manifold and a set of n smooth vector fields defined on it. Suppose they are pointwise linearly independent and do commute each other (i.e. zero commutator/Lie bracket). That means they span the entire tangent space at any point and since commute, they define a local coordinate basis. What does this mean? Well, starting from any point on the...

Similar threads

  • · Replies 29 ·
Replies
29
Views
3K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 26 ·
Replies
26
Views
613
  • · Replies 11 ·
Replies
11
Views
3K
Replies
1
Views
297
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
6K
Replies
3
Views
4K
  • · Replies 1 ·
Replies
1
Views
4K