A About Schur's lemma in lie algebra

HDB1
Messages
77
Reaction score
7
Please, I have a question about Schur's Lemma ;

Let $\phi: L \rightarrow g I((V)$ be irreducible. Then the only endomorphisms of $V$ commuting with all $\phi(x)(x \in L)$ are the scalars.

Could you explain it, and please, how we can apply this lemma on lie algebra ##L=\mathfrak{s l}(2)##thanks in advance, :heart:
 
Physics news on Phys.org
Dear @fresh_42 , If you could help, I would appreciate it, thanks in advance, :heart: :heart:
 
HDB1 said:
Please, I have a question about Schur's Lemma ;

Let $\phi: L \rightarrow g I((V)$ be irreducible. Then the only endomorphisms of $V$ commuting with all $\phi(x)(x \in L)$ are the scalars.

Could you explain it, and please, how we can apply this lemma on lie algebra ##L=\mathfrak{s l}(2)##thanks in advance, :heart:
It says if ##\varphi \, : \,V\longrightarrow V## is a linear transformation of the vector space ##V## and ##\phi\, : \, L \rightarrow \mathfrak{gl}(V)## an irreducible representation of the Lie algebra ##L## then
\begin{align*}
[\phi(X),\varphi ](v)&=(\phi(X)\cdot \varphi -\varphi \cdot \phi(X))(v)=\phi(X).\varphi (v)-\varphi (\phi(X).v)=0 \text{ for all }X\in L\\ &\Longrightarrow \\
\varphi(v)&=\lambda \cdot v\text{ for some }\lambda \in \mathbb{K}
\end{align*}

Note:
a) ##\varphi \in \operatorname{End}(V)=\mathfrak{gl}(V)##
b) ##\{\alpha \in \mathfrak{gl}(V)\,|\,[\alpha,\beta]=0\text{ for all }\beta\in \mathfrak{gl}(V)\}=Z(\mathfrak{gl}(V)).##
c) Schur's lemma can therefore be phrased as follows:

A linear transformation ##\varphi ## of a finite-dimensional representation space ##V## of an irreducible representation ##\phi## of a Lie algebra ##L,## i.e. ##V## is an irreducible ##L## module, that lies in the center of ##\mathfrak{gl}(V)## is a scalar multiple of the identity matrix.

Consider the case ##L=\mathfrak{sl}(2)\, , \,V_2=\mathbb{K}^2## with ##x.v=[x,v]## being the Lie multiplication of ##\mathfrak{sl}(2)\ltimes V_2## we have seen before, will say: ##x.v## is the multiplication of a matrix ##x\in \mathfrak{sl}(2)## and a vector ##v\in V_2.## This is an irreducible representation, since ##V_2## has no one-dimensional submodule ##U=\mathbb{K}u## such that ##x.u \in U## for every ##x\in \mathfrak{sl}(2).## (Prove it!)

So all conditions of Schur's lemma are fulfilled. Now, if we have a matrix ##\varphi = A= \begin{pmatrix}a&b\\c&d\end{pmatrix}\in \mathfrak{gl}(V_2)## such that
$$
0=[\phi(X),A]=[X,A]=X\cdot A- A\cdot X\text{ for all } X\in \mathfrak{sl}(2) \;\;\Longleftrightarrow \;\;AX=XA
$$
then ##A=\lambda \cdot \begin{pmatrix}1&0\\0&1\end{pmatrix}## for some ##\lambda \in \mathbb{K}.##

You can check this yourself. Prove:
$$
\begin{pmatrix}a&b\\c&d\end{pmatrix}\cdot \begin{pmatrix}h&x\\y&-h\end{pmatrix}=\begin{pmatrix}h&x\\y&-h\end{pmatrix}\cdot \begin{pmatrix}a&b\\c&d\end{pmatrix} \text{ for all }x,h,y\;\;\Longrightarrow \;\;b=c=0 \text{ and }a=d
$$
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
9
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K