I About the meaning "on-shell" vs "off-shell" in Hamiltonian mechanics

AI Thread Summary
The discussion focuses on the concepts of "on-shell" and "off-shell" in the context of Hamiltonian and Lagrangian mechanics. An "on-shell" trajectory in phase space is defined by the relationship between generalized coordinates and momenta as dictated by Hamilton's equations, while "off-shell" trajectories do not adhere to these constraints and can be treated as independent variables. This distinction is crucial for understanding path integral evaluations in quantum mechanics, where off-shell paths may involve virtual particles and scenarios like quantum tunneling. The conversation highlights the importance of these concepts in both classical mechanics and quantum theory. Understanding these terms enhances the comprehension of dynamics within Hamiltonian mechanics.
cianfa72
Messages
2,784
Reaction score
293
TL;DR Summary
About the meaning "on-shell" vs "off-shell" in the context of Hamiltonian/Lagrangian mechanics
In the derivation of Hamiltonian mechanics, the concept of "on-shell" vs "off-shell" is involved in the calculation.

I searched it for like off-shelf, however it seems it makes sense in the context of four-momentum in special relativity.

What is the meaning of that concept in the context of Hamiltonian/Lagrangian mechanics ? Thanks.
 
Last edited:
Physics news on Phys.org
cianfa72 said:
TL;DR Summary: About the meaning "on-shell" vs "off-shell" in the context of Hamiltonian/Lagrangian mechanics

In the derivation of Hamiltonian mechanics, the concept of "on-shell" vs "off-shell" is involved in the calculation.

I searched it for like off-shelf, however it seems it makes sense in the context of four-momentum in special relativity.

What is the meaning of that concept in the context of Hamiltonian/Lagrangian mechanics ? Thanks.
I'm not an expert on Hamiltonian Mechanics but as I understand it, we have a phase space with coordinates ##(q_i,p_i)##. A trajectory is a path through phase space parametrized by time.

Such a path is considered on shell if ##\frac{dq_i}{dt} = \frac{\partial H}{\partial p_i}##.

With a typical Hamiltonian of ##H = m/2\sum p_i^2 + V(q_i)## this just reduces to ##\frac{dq_i}{dt} = p_i/m = \dot{q_i}##.

TLDR, On shell is restricted to paths where q and p are related via the Hamiltonian and off-shell refers to an arbitrary path through phase space where q and p aren't necessarily related and are treated as independent variables.
 
  • Like
Likes ohwilleke and cianfa72
Ah ok, so basically the "time evolution" of an "on-shell" trajectory through phase space is "constrained" from Hamilton's equations.
 
cianfa72 said:
Ah ok, so basically the "time evolution" of an "on-shell" trajectory through phase space is "constrained" from Hamilton's equations.
Mostly on-shell and off-shell are used to distinguish between different kinds of path integral evaluations in quantum mechanics. In quantum mechanics, paths that would be forbidden by conservation laws are still possible so long as the end point where an observation if made complies with the relevant conservation laws.

In particular, off-shell analysis considers "virtual" paths from one state to another, sometimes involving "virtual particles." One of the most common cases where an off-shell analysis is needed is in quantum tunneling situations, and in W boson transitions where the system lacks the mass-energy to create a real, on-shell W boson in an intermediate step.
 
Thread 'Question about pressure of a liquid'
I am looking at pressure in liquids and I am testing my idea. The vertical tube is 100m, the contraption is filled with water. The vertical tube is very thin(maybe 1mm^2 cross section). The area of the base is ~100m^2. Will he top half be launched in the air if suddenly it cracked?- assuming its light enough. I want to test my idea that if I had a thin long ruber tube that I lifted up, then the pressure at "red lines" will be high and that the $force = pressure * area$ would be massive...
I feel it should be solvable we just need to find a perfect pattern, and there will be a general pattern since the forces acting are based on a single function, so..... you can't actually say it is unsolvable right? Cause imaging 3 bodies actually existed somwhere in this universe then nature isn't gonna wait till we predict it! And yea I have checked in many places that tiny changes cause large changes so it becomes chaos........ but still I just can't accept that it is impossible to solve...
Back
Top