- 2,559
- 4
Let z : \mathbb{N}^2 \to \mathbb{C}. Suppose that:
1) for all natural n, \sum _{j \in \mathbb{N}}z(n,j) converges absolutely.
2) for all natural j, \sum _{n \in \mathbb{N}}z(n,j) converges absolutely.
3) \sum _{n \in \mathbb{N}}\left (\sum _{j \in \mathbb{N}} z(n,j)\right ) converges absolutely.
Can we conclude that
4) \sum _{j \in \mathbb{N}}\left (\sum _{n \in \mathbb{N}} z(n,j)\right ) converges absolutely as well, with
\sum _{j \in \mathbb{N}}\left (\sum _{n \in \mathbb{N}} z(n,j)\right ) = \sum _{n \in \mathbb{N}}\left (\sum _{j \in \mathbb{N}} z(n,j)\right )
1) for all natural n, \sum _{j \in \mathbb{N}}z(n,j) converges absolutely.
2) for all natural j, \sum _{n \in \mathbb{N}}z(n,j) converges absolutely.
3) \sum _{n \in \mathbb{N}}\left (\sum _{j \in \mathbb{N}} z(n,j)\right ) converges absolutely.
Can we conclude that
4) \sum _{j \in \mathbb{N}}\left (\sum _{n \in \mathbb{N}} z(n,j)\right ) converges absolutely as well, with
\sum _{j \in \mathbb{N}}\left (\sum _{n \in \mathbb{N}} z(n,j)\right ) = \sum _{n \in \mathbb{N}}\left (\sum _{j \in \mathbb{N}} z(n,j)\right )
Last edited: