How to Calculate Absolute Gamma Probability from Relative Intensities?

Click For Summary
SUMMARY

This discussion focuses on calculating absolute gamma probabilities from relative intensities found in the IAEA table of nuclides, specifically for isotopes like Ac-228. Participants clarify that the sum of relative intensities can exceed 1 due to the emission of multiple gamma rays in a single decay event. The conversation emphasizes the need to convert these relative intensities into probabilities that total to 1 for accurate calculations related to activity and mass. The issue of accumulated error in observed probabilities is also highlighted as a potential reason for discrepancies.

PREREQUISITES
  • Understanding of gamma decay processes and nuclide behavior
  • Familiarity with the IAEA table of nuclides
  • Knowledge of probability theory as it applies to nuclear decay
  • Basic concepts of radioactive decay and its implications on mass calculations
NEXT STEPS
  • Research methods for converting relative intensities to absolute probabilities in nuclear physics
  • Explore the concept of multiple gamma emissions in decay processes
  • Study the implications of accumulated error in nuclear decay probability calculations
  • Investigate the use of decay schemes from the National Nuclear Data Center (NNDC) for practical applications
USEFUL FOR

Nuclear physicists, radiochemists, and anyone involved in the study of radioactive decay and gamma emissions will benefit from this discussion.

HaniNaber
Messages
3
Reaction score
0
Hi All,

I want to ask how to calculate the absolute gamma probability from relative intensities ( found on the tables of nucliedes) following alpha or beta decay.

I mean the probabilities that all add to 1.

Many thanks.
 
Engineering news on Phys.org
HaniNaber said:
the absolute gamma probability from relative intensities
I'm not sure what one means by "the absolute gamma probability". To what 'probability' is one referring. After alpha or beta decay, a nucleus of a radionuclide can be left in an excited state, and the only way to become more stable is to emit a gamma ray. A given gamma energy has a probability of occurring when compared to all the other possible decays, and some of more likely to happen, or more probable, depending on precursor decay.

To what 'chart of the nuclides' is one referring?
 
I mean in the table of nuclides for example the IAEA table , they would list the relative intensities of all the gammas from one isotope for example one gamma from the 4th energy level to the 2nd and one from the 2nd to ground state, after adding all the relative probabilities of all the possible gammas listed they don't add to one (after adding all of them the total is 1.4 for Ac228), I'm looking to convert these relative intensities to probabilities that add to 1.

Thank You.
 
HaniNaber said:
I mean in the table of nuclides for example the IAEA table , they would list the relative intensities of all the gammas from one isotope for example one gamma from the 4th energy level to the 2nd and one from the 2nd to ground state, after adding all the relative probabilities of all the possible gammas listed they don't add to one (after adding all of them the total is 1.4 for Ac228), I'm looking to convert these relative intensities to probabilities that add to 1.

Thank You.
Well, the reason that probabilities for all gamma ray energies can add up to >1 is that in some decays two gamma rays are produced successively, i.e., they both happen successively from the same decay. One sees this in radiative capture of neutrons as well, where the excited nucleus emits 1 or 2 gammas in response to absorption of a neutron. The energy of the two gammas is often nearly equal to the single gamma energy.

https://www.nndc.bnl.gov/nudat2/getdecayscheme.jsp?nucleus=228TH&dsid=228ac bM decay&unc=nds
 
Last edited:
  • Like
Likes Vanadium 50
Thank you, it makes sense.

I am trying to do some calculations related to activity and mass based of the total probability of all the gammas, and for this calculation to be done, the total probability should be less than 1, otherwise I would get negative masses.

I think that accumulation of error in adding all the possible probabilities ( some might have never been observed) is the reason for greater than 1 total probability. It might just be impractical to do so.

Thanks again for your help.
 
Hello, I am designing an X-ray irradiator with MCNP simulation. But I am still in confusion, whether my X-ray housing will be a box or a cylinder. If the box (macrobody identifier of MCNP) is required, I am trying to match the dimension as that of the cylinder, i,e, the height will be that of the cylinder height, and the other two dimensions will be that of the radius of the cylinder (surface 52 and 53). Can anybody please help me define the surfaces? Below is my attached text file. Forgot...

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 15 ·
Replies
15
Views
4K
  • · Replies 5 ·
Replies
5
Views
3K
Replies
0
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
Replies
7
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
12
Views
2K