MHB Absolute Value Graph: Explaining |2-x| Horizontal Translation Right

buttretler
Messages
8
Reaction score
0
Can someone explain to me why |2-x| would have a horizontal translation to the right? When I've always been taught that anytime you see a [+] it will translate to the left. The graph would be a regular |x| graph but it is shift 2 spots to the right. Thanks to anyone for help
 
Mathematics news on Phys.org
Ineedhelppp said:
Can someone explain to me why |2-x| would have a horizontal translation to the right? When I've always been taught that anytime you see a [+] it will translate to the left. The graph would be a regular |x| graph but it is shift 2 spots to the right. Thanks to anyone for help

There are several ways of thinking about this. One way: $|2-x|=|x-2|$, so you can see that it must be shifted to the right. In addition, one way of thinking about shifting is to ask yourself at what value of $x$ will the stuff inside the magnitudes be zero? That value of $x$ is going to have the corner that $|x|$ normally does at the origin. The nice thing about this second way of thinking is that it works for positive or negative shifts. Does this answer your question?
 
I think the second way I understand better, it still leaves me hazey because if |x-2|=|2-x| would mean no shift is taking place. And the only way at my level to show it is to the right, is a table of values with f(0),f(1) and f(2). Either way thanks for the further inlightenment.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top