- #1
agnimusayoti
- 240
- 23
- Homework Statement
- Find absolute value of ##\sin (x-iy)##.
- Relevant Equations
- $$\sin z=\frac {e^{iz}-e^{-iz}}{2i}$$
If ##z=x+iy## then, absolute value of this complex number is ##|z|=\sqrt {x^2+y^2}##
So far I've got the real part and imaginary part of this complex number. Assume: ##z=\sin (x+iy)##, then
1. Real part: ##\sin x \cosh y##
2. Imaginary part: ##\cos x \sinh y##
If I use the absolute value formula, I got ##|z|=\sqrt{\sin^2 {x}.\cosh^2 {y}+\cos^2 {x}.\sinh^2 {y} }##
How to simplify that answer to ##|z|=\sqrt{\sin^2 {x}+\sinh^2 {y}}##?
Thanks
1. Real part: ##\sin x \cosh y##
2. Imaginary part: ##\cos x \sinh y##
If I use the absolute value formula, I got ##|z|=\sqrt{\sin^2 {x}.\cosh^2 {y}+\cos^2 {x}.\sinh^2 {y} }##
How to simplify that answer to ##|z|=\sqrt{\sin^2 {x}+\sinh^2 {y}}##?
Thanks
Last edited by a moderator: