AC Method for Factoring Trinomials

  • Context: MHB 
  • Thread starter Thread starter Ackbach
  • Start date Start date
  • Tags Tags
    Ac Factoring Method
Click For Summary
SUMMARY

The AC Method for factoring trinomials of the form $ax^{2}+bx+c$ involves identifying factor pairs of the product $ac$ that sum to $b$. The method requires writing the trinomial as $(ax+s)(ax+t)$, where $s$ and $t$ are the identified pairs. After determining the greatest common factors for each binomial, the final factorization is expressed as $(fx+u)(gx+v)$, with specific formulas for $f$, $u$, $g$, and $v$. This method is validated through algebraic proof, confirming its effectiveness in finding unique factorizations.

PREREQUISITES
  • Understanding of quadratic equations and their standard form.
  • Familiarity with the concept of greatest common factors (GCF).
  • Knowledge of prime factorization and its application in mathematics.
  • Basic algebraic manipulation skills, including factoring and expanding polynomials.
NEXT STEPS
  • Practice factoring various trinomials using the AC Method.
  • Explore advanced factoring techniques, such as completing the square.
  • Learn about the Fundamental Theorem of Algebra and its implications for polynomial equations.
  • Investigate the relationship between GCF and polynomial factorization in greater depth.
USEFUL FOR

Mathematics educators, students studying algebra, and anyone seeking to improve their skills in polynomial factorization and quadratic equations.

Ackbach
Gold Member
MHB
Messages
4,148
Reaction score
94
Description of the Method

We are given a trinomial of the form $ax^{2}+bx+c$, and asked to factor it into a product of two dissimilar binomials $(fx+u)(gx+v)$. The method that follows assumes $a,b,c$ have no common factor; if they do, you must factor out the greatest common factor before proceeding.

The method is as follows:
  • Write $ax^{2}+bx+c$ as $(ax+\underline{\phantom{45}}\,)(ax+\underline{\phantom{45}}\,)$.
  • Examine the factor pairs of the product $ac$, and see which pair, when added together, make $b$. Call this pair $s,t$. You now write $(ax+s)(ax+t)$.
  • For each binomial, divide out the greatest common factor of the coefficients. That is, for $ax+s$, divide out the greatest common factor of $a$ and $s$, and for $ax+t$, divide out the greatest common factor of $a$ and $t$.
  • The result is $(fx+u)(gx+v)$, where
    \begin{align*}
    f&=\frac{a}{\text{gcf}(a,s)} \\
    u&=\frac{s}{\text{gcf}(a,s)} \\
    g&=\frac{a}{\text{gcf}(a,t)} \\
    v&=\frac{t}{\text{gcf}(a,t)}.
    \end{align*}

Examples of the Method

  • Factor $15x^{2}+29x-14$. There is no gcf, so we examine the product $15\times (-14)=-210$. The pair products of $-210$ that add to $29$ are $35$ and $-6$. Hence, we write
    $$15x^{2}+29x-14=\left(\frac{15x+35}{5}\right)\left(\frac{15x-6}{3}\right)=(3x+7)(5x-2).$$
  • Factor $12x^{2}-46x-36$. This one has a greatest common factor, so we get that out of the way as $2(6x^{2}-23x-18)$. The pair products of $6(-18)=-108$ that add to $-23$ are $-27$ and $4$. So we write
    $$2(6x^{2}-23x-18)=2\left(\frac{6x-27}{3}\right)\left(\frac{6x+4}{2}\right)=2(2x-9)(3x+2).$$

Note that you can use the prime factorization of $ac$ to find all factor pairs, and hence the correct factor pair. Also note that if $ac<0$, you are looking for the difference between the two factors of the factor pair, and if $ac>0$, you are looking for the sum.

Proof of the Method

We assume that it is possible to execute the method. If the method does not execute, then I claim the quadratic does not factor. First, we show that multiplying out the result yields the original quadratic. That is,
\begin{align*}
(fx+u)(gx+v)&=fgx^2+fvx+ugx+uv \\
&=fgx^2+(fv+ug)x+uv \\
&=\left(\frac{a}{\text{gcf}(a,s)}\cdot \frac{a}{\text{gcf}(a,t)}\right)x^2
+\left(\frac{a}{\text{gcf}(a,s)}\cdot\frac{t}{\text{gcf}(a,t)}+
\frac{s}{\text{gcf}(a,s)}\cdot \frac{a}{\text{gcf}(a,t)} \right)x \\
&\qquad+\frac{s}{\text{gcf}(a,s)}\cdot \frac{t}{\text{gcf}(a,t)} \\
&=\left(\frac{a^2}{\text{gcf}(a,s)\cdot \text{gcf}(a,t)}\right)x^2
+\left(\frac{a(s+t)}{\text{gcf}(a,s)\cdot\text{gcf}(a,t)}\right)x
+\frac{st}{\text{gcf}(a,s)\cdot\text{gcf}(a,t)} \\
&=\left(\frac{a^2}{\text{gcf}(a,s)\cdot \text{gcf}(a,t)}\right)x^2
+\left(\frac{ab}{\text{gcf}(a,s)\cdot\text{gcf}(a,t)}\right)x
+\frac{ac}{\text{gcf}(a,s)\cdot\text{gcf}(a,t)} \\
&=\frac{a}{\text{gcf}(a,s)\cdot\text{gcf}(a,t)} \, (ax^2+bx+c).
\end{align*}
Recall that $st=ac$, and $s+t=b$. So, for this method to work, we must show that
$$\frac{a}{\text{gcf}(a,s)\cdot\text{gcf}(a,t)}=1.$$
By the Fundamental Theorem of Arithmetic, we can write
\begin{align*}
a&=p_1^{a_1}\cdot p_2^{a_2}\cdots p_k^{a_k} \\
b&=p_1^{b_1}\cdot p_2^{b_2}\cdots p_k^{b_k} \\
c&=p_1^{c_1}\cdot p_2^{c_2}\cdots p_k^{c_k},
\end{align*}
where the $p_j$ are primes, and $a_j, b_j$ and $c_j$ are non-negative integers. Note that we have included all primes in either $a$ or $b$ or $c$'s factorization, and recall that $\text{gcf}(a,b,c)=1$. This forces $\min(a_j,b_j,c_j)=0$ for all $j$. Next, suppose that
\begin{align*}
s&=p_1^{s_1}\cdot p_2^{s_2}\cdots p_k^{s_k} \\
t&=p_1^{t_1}\cdot p_2^{t_2}\cdots p_k^{t_k},
\end{align*}
are the prime factorizations of $s$ and $t$. Because $ac=st$, it must be that $a_j+c_j=s_j+t_j.$ Then
\begin{align*}
\text{gcf}(a,s)&=p_1^{\min(a_1,s_1)}\cdot p_2^{\min(a_2,s_2)} \cdots
p_k^{\min(a_k,s_k)} \\
\text{gcf}(a,t)&=p_1^{\min(a_1,t_1)}\cdot p_2^{\min(a_2,t_2)}
\cdots p_k^{\min(a_k,t_k)}.
\end{align*}
We are attempting to prove that
$$a=\text{gcf}(a,s)\cdot\text{gcf}(a,t),$$
or, equivalently, that
$$a_j=\min(a_j,s_j)+\min(a_j,t_j)$$
for all $j$. This equation is certainly not true in general; however, I argue that it is true in our special case here.

We examine the equation $s+t=b$. Let $z=\text{gcf}(s,t)$. Then $z|b$. But if $z>1$, then $z$ cannot divide both $a$ and $c$, or else $\text{gcf}(a,b,c)=z>1$. Then
$$\text{gcf}(a,b,c)=1\implies \text{gcf}(a,s+t,c)=1\implies
\text{gcf}(a,c,s,t)=1\implies \min(a_j,c_j,s_j,t_j)=0.$$
We break this down by cases.
  • Suppose $c_j=0$. Then $a_j=s_j+t_j$, implying that $a_j>s_j$ and $a_j>t_j$. Hence, $\min(a_j,s_j)+\min(a_j,t_j)=s_j+t_j=a_j,$ as required.
  • Suppose $c_j>0$. Then we have two subcases:
    • $a_j=0$. Then $\min(a_j,s_j)+\min(a_j,t_j)=0+0=0=a_j$, as required.
    • $a_j>0$. Then either $s_j$ or $t_j$ is zero. Without Loss of Generality, we may assume $s_j=0$. Then $a_j+c_j=t_j$, implying $a_j<t_j$. It follows that $\min(a_j,s_j)+\min(a_j,t_j)=0+a_j=a_j$, as required.
In all cases, $\min(a_j,s_j)+\min(a_j,t_j)=a_j$, showing that the method, if it's possible to execute, does indeed result in a final expression that is
equivalent to the original expression.

By the Fundamental Theorem of Algebra, if the quadratic factors, it factors uniquely. Since we have found a factorization, assuming it has worked, we have found the correct factorization.
 
Last edited by a moderator:
Science news on Phys.org
Greg Bernhardt said:
Thanks @Ackbach! What forum do you think we could move this to?
STEM Educators and Teachers again, I think.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 21 ·
Replies
21
Views
1K
  • · Replies 1 ·
Replies
1
Views
956
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K