High School Acceleration -- How is the intermediate displacement speed derived?

Click For Summary
The discussion centers on the application of SUVAT equations, particularly in the context of deriving intermediate displacement speed under constant acceleration. It emphasizes the importance of formulating clear questions to effectively solve problems in physics. A proposed formula for intermediate speed is critiqued, with corrections provided to align it with established SUVAT principles. The correct expression for speed is clarified, ensuring it meets the criteria for a valid physical equation. Understanding and applying SUVAT equations is essential for solving related motion problems accurately.
huc369
Messages
7
Reaction score
0
TL;DR
How is the intermediate displacement speed derived?
I don't know if I wrote it correctly
微信图片_20221007125631.jpg
 
Physics news on Phys.org
Do you know any SUVAT equations?
 
PeroK said:
SUVAT
Thank you very much, I will google it
 
How do you know that the "SUVAT Equations" apply? I don't understand, which problem is to be solved to begin with. Without asking a clear question, you can't get anything done in science!
 
huc369 said:
Summary: How is the intermediate displacement speed derived?

I don't know if I wrote it correctlyView attachment 315157
Since SUVAT involves constant-acceleration,
and constant-velocity (zero acceleration) is a special case,
consider your proposed formula in the zero-acceleration case, where ##v_0=v_B=v_T##
(where B represents the intermediate displacement: ##(x_B-x_0)=\frac{1}{2}(x_T-x_0)## in your time interval ##0\leq t\leq T##).

Assume ##v_B>0##.
Your proposed formula would read
$$v_B=\frac{\sqrt{(v_B)^2+(v_B)^2}}{2}=\frac{v_B}{\sqrt{2}}\qquad\mbox(false).$$
Instead, it should (based on the symbols available in your recollection) be
$$v_B=\sqrt{ \frac{(v_0)^2+(v_T)^2}{2}}$$
so that $$v_B=\sqrt{ \frac{(v_B)^2+(v_B)^2}{2}}=v_B.$$
(Technically, to be a speed, the left-hand side should be ##|v_B|##.)

Now, following @PeroK 's suggestion to your question,
this could be derived using SUVAT (the constant acceleration equations).
 
Topic about reference frames, center of rotation, postion of origin etc Comoving ref. frame is frame that is attached to moving object, does that mean, in that frame translation and rotation of object is zero, because origin and axes(x,y,z) are fixed to object? Is it same if you place origin of frame at object center of mass or at object tail? What type of comoving frame exist? What is lab frame? If we talk about center of rotation do we always need to specified from what frame we observe?

Similar threads

  • · Replies 13 ·
Replies
13
Views
348
  • · Replies 6 ·
Replies
6
Views
1K
Replies
4
Views
562
  • · Replies 29 ·
Replies
29
Views
3K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 13 ·
Replies
13
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 23 ·
Replies
23
Views
3K
  • · Replies 6 ·
Replies
6
Views
1K