I Adapting Schwarzschild Metric for Nonzero Λ

Sciencemaster
Messages
129
Reaction score
20
TL;DR Summary
The Schwarzschild metric is designed with a cosmological constant in mind. Would it be feasible to make some modifications to it that would make it apply in a spacetime with a nonzero Λ?
So, there are a fair amount of metrics designed with a zero value for the cosmological constant in mind. I was wondering if there was some method to modify metrics to account for a nonzero cosmological constant. Say, for instance, the Schwarzschild metric due to its relative simplicity. A feature of the metric is that it has a stress-energy tensor of 0 due to both the ricci tensor and scalar curvature going to 0. However, this doesn't happen if the cosmological constant is nonzero. So, would there be a way to modify a metric to account for a nonzero cosmological constant while keeping fundamental features intact--in this case, the 0 stress energy tensor and general form of the Schwarzschild metric? I tried multiplying by a constant as well as a few other minor modifications, and none of them gave a SET of 0. So, would it be feasible to make some modification to a metric designed for Λ=0 in order for it to apply when Λ is nonzero while still keeping similar basic properties?
 
Physics news on Phys.org
That's Schwarzschild-deSitter spacetime, if I understand what you're trying to do.

I don't know about "keeping similar basic properties". There are some quite significant differences, such as a maximum mass for a black hole.
 
  • Like
Likes vanhees71 and PeterDonis
Sciencemaster said:
would there be a way to modify a metric to account for a nonzero cosmological constant while keeping fundamental features intact--in this case, the 0 stress energy tensor and general form of the Schwarzschild metric?
Of course you can't keep everything else exactly the same when you add a nonzero cosmological constant. But the Schwarzschild-de Sitter solution, which @Ibix mentioned, is what you get when you assume spherical symmetry, a nonzero cosmological constant, and no other stress-energy present. If you look it up, you will see that its metric is quite similar to the Schwarzschild metric; the only difference (at least in the coordinates that correspond to standard Schwarzschild coordinates) is an extra term in ##\Lambda## in ##g_{rr}## and ##g_{tt}##.
 
First off, I want to add that I made a mistake. I said something along the lines of, 'keeping the Schwarzschild metric's property of a 0 SET. However, I neglected the ambient energy density in the universe that contributes to the nonzero cosmological constant. So...yeah, I was thinking about a metric that gave $$T_{00}=\frac{\rho_{vacuum}}{c^2}$$. Ignoring that, thanks for suggesting the Schwarzschild-de Sitter, that definitely helps and might be close enough to what I'm looking for!
 
Sciencemaster said:
Schwarzschild-de Sitter, that definitely helps and might be close enough to what I'm looking for!
It is what you are looking for; it is the unique metric that satisfies the condition you give in post #4 and also contains a Schwarzschild black hole.
 
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...

Similar threads

Replies
7
Views
7K
Replies
57
Views
3K
Replies
11
Views
2K
Replies
13
Views
3K
Replies
22
Views
3K
Replies
22
Views
3K
Replies
11
Views
2K
Back
Top