I Adapting Schwarzschild Metric for Nonzero Λ

Sciencemaster
Messages
129
Reaction score
20
TL;DR Summary
The Schwarzschild metric is designed with a cosmological constant in mind. Would it be feasible to make some modifications to it that would make it apply in a spacetime with a nonzero Λ?
So, there are a fair amount of metrics designed with a zero value for the cosmological constant in mind. I was wondering if there was some method to modify metrics to account for a nonzero cosmological constant. Say, for instance, the Schwarzschild metric due to its relative simplicity. A feature of the metric is that it has a stress-energy tensor of 0 due to both the ricci tensor and scalar curvature going to 0. However, this doesn't happen if the cosmological constant is nonzero. So, would there be a way to modify a metric to account for a nonzero cosmological constant while keeping fundamental features intact--in this case, the 0 stress energy tensor and general form of the Schwarzschild metric? I tried multiplying by a constant as well as a few other minor modifications, and none of them gave a SET of 0. So, would it be feasible to make some modification to a metric designed for Λ=0 in order for it to apply when Λ is nonzero while still keeping similar basic properties?
 
Physics news on Phys.org
That's Schwarzschild-deSitter spacetime, if I understand what you're trying to do.

I don't know about "keeping similar basic properties". There are some quite significant differences, such as a maximum mass for a black hole.
 
  • Like
Likes vanhees71 and PeterDonis
Sciencemaster said:
would there be a way to modify a metric to account for a nonzero cosmological constant while keeping fundamental features intact--in this case, the 0 stress energy tensor and general form of the Schwarzschild metric?
Of course you can't keep everything else exactly the same when you add a nonzero cosmological constant. But the Schwarzschild-de Sitter solution, which @Ibix mentioned, is what you get when you assume spherical symmetry, a nonzero cosmological constant, and no other stress-energy present. If you look it up, you will see that its metric is quite similar to the Schwarzschild metric; the only difference (at least in the coordinates that correspond to standard Schwarzschild coordinates) is an extra term in ##\Lambda## in ##g_{rr}## and ##g_{tt}##.
 
First off, I want to add that I made a mistake. I said something along the lines of, 'keeping the Schwarzschild metric's property of a 0 SET. However, I neglected the ambient energy density in the universe that contributes to the nonzero cosmological constant. So...yeah, I was thinking about a metric that gave $$T_{00}=\frac{\rho_{vacuum}}{c^2}$$. Ignoring that, thanks for suggesting the Schwarzschild-de Sitter, that definitely helps and might be close enough to what I'm looking for!
 
Sciencemaster said:
Schwarzschild-de Sitter, that definitely helps and might be close enough to what I'm looking for!
It is what you are looking for; it is the unique metric that satisfies the condition you give in post #4 and also contains a Schwarzschild black hole.
 
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
I started reading a National Geographic article related to the Big Bang. It starts these statements: Gazing up at the stars at night, it’s easy to imagine that space goes on forever. But cosmologists know that the universe actually has limits. First, their best models indicate that space and time had a beginning, a subatomic point called a singularity. This point of intense heat and density rapidly ballooned outward. My first reaction was that this is a layman's approximation to...
So, to calculate a proper time of a worldline in SR using an inertial frame is quite easy. But I struggled a bit using a "rotating frame metric" and now I'm not sure whether I'll do it right. Couls someone point me in the right direction? "What have you tried?" Well, trying to help truly absolute layppl with some variation of a "Circular Twin Paradox" not using an inertial frame of reference for whatevere reason. I thought it would be a bit of a challenge so I made a derivation or...

Similar threads

Replies
7
Views
7K
Replies
57
Views
3K
Replies
11
Views
2K
Replies
13
Views
3K
Replies
22
Views
3K
Replies
22
Views
3K
Replies
11
Views
2K
Back
Top