Adding and subtracting vectors using vector diagrams

  • Thread starter Thread starter Ishfa
  • Start date Start date
Click For Summary

Homework Help Overview

The discussion revolves around adding and subtracting vectors using vector diagrams, focusing on the correct application of vector addition principles and the cosine law in a physics context.

Discussion Character

  • Exploratory, Assumption checking, Problem interpretation

Approaches and Questions Raised

  • Participants discuss the importance of correctly drawing vector diagrams, particularly the 'tip-to-tail' method, and question the original poster's (OP) diagram. They also explore the implications of using the cosine law in vector addition and subtraction.

Discussion Status

Some participants have pointed out errors in the OP's diagram and calculations, suggesting that the OP's misunderstanding may have led to correct numerical results despite the mistakes. There is an ongoing exploration of how the vector diagrams should be constructed and interpreted.

Contextual Notes

Participants note that the OP's question specifically requires the construction of vector diagrams to find magnitudes and directions, which may not have been adequately addressed in the OP's approach.

Ishfa
Messages
3
Reaction score
0
Homework Statement
Classical Mechanics
Relevant Equations
s= (a^2 + b^2 + 2ab cos alpha)^1/2
Screenshot 2025-09-25 171406.webp
Screenshot 2025-09-25 171421.webp
 
Physics news on Phys.org
:welcome:

Look at the picture:
Doesn't it seem strange that

1758800807980.webp


Check your math -- and is your calculator set up for radians or for degrees ?

##\ ##
 
Ishfa said:
Relevant Equations: s= (a^2 + b^2 + 2ab cos alpha)^1/2

View attachment 365813View attachment 365814
It would be best to sort out part a) first. There are some mistakes. The first two are:

1) The diagram is wrong. When adding vectors using a diagram, you draw the vectors 'tip-to-tail' or construct a suitable parallelogram.

2) The correct formula for the cosine law is ##c^2 = a^2 + b^2~–~ 2ab \cos\alpha## (where ##\alpha## is the internal angle between sides a and b). But you have used a plus sign.

Surprisingly I agree with ##|\vec a + \vec b| = 4.4587##. It looks like some mistakes cancelled!

Minor edit.
 
Last edited:
Steve4Physics said:
Surprisingly I agree with ##|\vec a + \vec b| = 4.4587##. It looks like some mistakes cancelled!
The expressions for the magnitudes are obtained from
##|\mathbf a + \mathbf b|^2=(\mathbf a + \mathbf b)\cdot(\mathbf a + \mathbf b)=a^2+b^2+2ab\cos\alpha##
##|\mathbf a - \mathbf b|^2=(\mathbf a - \mathbf b)\cdot(\mathbf a - \mathbf b)=a^2+b^2-2ab\cos\alpha##
where ##\alpha## is the angle between the two vectors when placed tail-to-tail, here 125°.

In the vector diagram, ##\vec S## is the difference, but the calculation below it is correct for the sum.
 
kuruman said:
In the vector diagram, ##\vec S## is the difference, but the calculation below it is correct for the sum.
The OP has incorrectly drawn the Post #1 diagram, believing (wrongly) that ##\vec s = \vec a + \vec b##.

Then they have ignored their diagram and used:
Ishfa said:
Relevant Equations: s= (a^2 + b^2 + 2ab cos alpha)^1/2
which gives the correct value.

The OP should note thast the question specifically says “By constructing vector diagrams, find the magnitudes and directions of …”.

If the OP had used their (incorrect) diagram correctly, they would have obtained ##|\vec S| \approx 8.4##.
 
Steve4Physics said:
The OP has incorrectly drawn the Post #1 diagram, believing (wrongly) that ##\vec s = \vec a + \vec b##.

Then they have ignored their diagram and used:

which gives the correct value.

The OP should note thast the question specifically says “By constructing vector diagrams, find the magnitudes and directions of …”.

If the OP had used their (incorrect) diagram correctly, they would have obtained ##|\vec S| \approx 8.4##.
That's another way of looking at it.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
964
Replies
14
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
14
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
26
Views
2K
Replies
10
Views
3K
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K