Aesity's question at Yahoo Answers regarding a geometric sequence

  • Context: MHB 
  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Geometric Sequence
Click For Summary
SUMMARY

The discussion centers on solving a geometric sequence problem where the first term is 27 and the sixth term is 512/9. The common ratio, r, is calculated as r = (512/243)^(1/5), resulting in approximately 0.4214. The seventh term is derived using the formula a_n = 27r^(n-1), yielding a_7 = 27(0.4214)^6. Additionally, the sum of the first five terms is computed using the formula S_n = a_1 * (r^n - 1) / (r - 1), leading to S_5 = 27 * ((2 * 2^(4/5)/3)^5 - 1) / (2 * 2^(4/5)/3 - 1).

PREREQUISITES
  • Understanding of geometric sequences and their properties
  • Familiarity with exponentiation and roots
  • Knowledge of summation formulas for geometric series
  • Basic algebraic manipulation skills
NEXT STEPS
  • Study the derivation of the geometric series sum formula
  • Learn about the properties of exponents and logarithms
  • Explore advanced applications of geometric sequences in real-world scenarios
  • Practice solving geometric sequence problems with varying parameters
USEFUL FOR

Students, educators, and anyone interested in mastering geometric sequences and their applications in mathematics.

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Geometric sequence question?

The first term of a geometric sequence is 27 and the sixth term is 512/9.

1) Find the seventh term

I have problem with this working. Either the calculator is pulling a false one on me or IDK.
Since 512/9 = 27r^(6-1)
then (512/9) / 27 = r^5
r^5=512/243
r= (512/243) ^ 1/5
What I got for r was 0.421399177

To arrive at the seventh term; 27(0.421399177)^(7-1). I got 0.15119
This is no where close to the answer but apparently there doesn't appear to be any anomalies with my workings. 2) Find the sum of the first five terms of this sequence.

I need explanations behind the workings. Thanks!

Here is a link to the question:

Geometric sequence question? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Last edited:
Mathematics news on Phys.org
Re: Aesity's question at Yahoo! Ansers regarding a geometric sequence

Hello Aesity,

We are given:

$\displaystyle a_1=27$

$\displaystyle a_6=\frac{512}{9}$

The $n$th term in the sequence is:

$\displaystyle a_n=27r^{n-1}$

and so we may determine $r$ by writing:

$\displaystyle a_6=\frac{512}{9}=27r^{6-1}$

$\displaystyle r^5=\frac{2^9}{3^5}$

$\displaystyle r=\frac{2^{\frac{9}{5}}}{3}=\frac{2\cdot2^{\frac{4}{5}}}{3}$

and so we have:

$\displaystyle a_n=27\left(\frac{2\cdot2^{\frac{4}{5}}}{3} \right)^{n-1}$

1.) Thus, we may now answer the first question:

$\displaystyle a_7=27\left(\frac{2\cdot2^{\frac{4}{5}}}{3} \right)^{6}=\frac{64\cdot2^{\frac{24}{5}}}{27}= \frac{1024 \cdot 2^{\frac{4}{5}}}{27}$

To find the sum of the first $n$ terms, consider:

$\displaystyle S_n=a_1+a_2+a_3+\cdots+a_n$

$\displaystyle S_n=a_1+a_1r+a_1r^2+\cdots+a_1r^{n-1}$

Multiply through by $r$:

$\displaystyle rS_n=a_1r+a_1r^2+a_1r^3+\cdots+a_1r^{n}=S_n+a_1r^{n}-a_1$

$\displaystyle rS_n-S_n=a_1r^{n}-a_1$

$\displaystyle (r-1)S_n=a_1r^{n}-a_1$

$\displaystyle S_n=\frac{a_1r^{n}-a_1}{r-1}=a_1\cdot\frac{r^n-1}{r-1}$

2.) Now we may answer the second question:

$\displaystyle S_5=a_1\cdot\frac{r^5-1}{r-1}=27\cdot\frac{\left(\frac{2\cdot2^{\frac{4}{5}}}{3} \right)^5-1}{\frac{2\cdot2^{\frac{4}{5}}}{3}-1}=\frac{269}{3(2\cdot2^{\frac{4}{5}}-3)}$
 
Last edited by a moderator:

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K