MHB Aesity's question at Yahoo Answers regarding a geometric sequence

AI Thread Summary
The discussion revolves around solving a geometric sequence problem where the first term is 27 and the sixth term is 512/9. To find the seventh term, the common ratio (r) is calculated using the formula for the nth term, leading to r being approximately 0.4214. The seventh term is then derived as 27 multiplied by r raised to the sixth power, resulting in a complex fraction. Additionally, the sum of the first five terms is computed using the formula for the sum of a geometric series, yielding a specific expression involving r. The calculations demonstrate the method for determining terms and sums in geometric sequences.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Geometric sequence question?

The first term of a geometric sequence is 27 and the sixth term is 512/9.

1) Find the seventh term

I have problem with this working. Either the calculator is pulling a false one on me or IDK.
Since 512/9 = 27r^(6-1)
then (512/9) / 27 = r^5
r^5=512/243
r= (512/243) ^ 1/5
What I got for r was 0.421399177

To arrive at the seventh term; 27(0.421399177)^(7-1). I got 0.15119
This is no where close to the answer but apparently there doesn't appear to be any anomalies with my workings. 2) Find the sum of the first five terms of this sequence.

I need explanations behind the workings. Thanks!

Here is a link to the question:

Geometric sequence question? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Last edited:
Mathematics news on Phys.org
Re: Aesity's question at Yahoo! Ansers regarding a geometric sequence

Hello Aesity,

We are given:

$\displaystyle a_1=27$

$\displaystyle a_6=\frac{512}{9}$

The $n$th term in the sequence is:

$\displaystyle a_n=27r^{n-1}$

and so we may determine $r$ by writing:

$\displaystyle a_6=\frac{512}{9}=27r^{6-1}$

$\displaystyle r^5=\frac{2^9}{3^5}$

$\displaystyle r=\frac{2^{\frac{9}{5}}}{3}=\frac{2\cdot2^{\frac{4}{5}}}{3}$

and so we have:

$\displaystyle a_n=27\left(\frac{2\cdot2^{\frac{4}{5}}}{3} \right)^{n-1}$

1.) Thus, we may now answer the first question:

$\displaystyle a_7=27\left(\frac{2\cdot2^{\frac{4}{5}}}{3} \right)^{6}=\frac{64\cdot2^{\frac{24}{5}}}{27}= \frac{1024 \cdot 2^{\frac{4}{5}}}{27}$

To find the sum of the first $n$ terms, consider:

$\displaystyle S_n=a_1+a_2+a_3+\cdots+a_n$

$\displaystyle S_n=a_1+a_1r+a_1r^2+\cdots+a_1r^{n-1}$

Multiply through by $r$:

$\displaystyle rS_n=a_1r+a_1r^2+a_1r^3+\cdots+a_1r^{n}=S_n+a_1r^{n}-a_1$

$\displaystyle rS_n-S_n=a_1r^{n}-a_1$

$\displaystyle (r-1)S_n=a_1r^{n}-a_1$

$\displaystyle S_n=\frac{a_1r^{n}-a_1}{r-1}=a_1\cdot\frac{r^n-1}{r-1}$

2.) Now we may answer the second question:

$\displaystyle S_5=a_1\cdot\frac{r^5-1}{r-1}=27\cdot\frac{\left(\frac{2\cdot2^{\frac{4}{5}}}{3} \right)^5-1}{\frac{2\cdot2^{\frac{4}{5}}}{3}-1}=\frac{269}{3(2\cdot2^{\frac{4}{5}}-3)}$
 
Last edited by a moderator:
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Back
Top