MHB Airshow4444's question at Yahoo Answers regarding volumes by slicing

  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Volumes
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Volume of a Solid using Calculus?


I am quite confused as to how to approach this. I know the volume will be the area between the curves but I haven't seen a problem like this before... Any help?

The base of a certain solid is an elliptical region with boundary curve 25x2+36y2=900. Cross-sections perpendicular to the x-axis are isosceles right triangles with hypotenuse in the base.

Use the formula V=∫baA(x)dx to find the volume of the solid.

The lower limit of integration is a =
The upper limit of integration is b =
The base of the triangular cross-section is the following function of x:
The height of the triangular cross-section is the following function of x:
The area of the triangular cross-section is A(x)=
Thus the volume of the solid is V=

I have posted a link there to this topic so the OP can see my work.
 
Mathematics news on Phys.org
Hello Airshow4444,

I would first rewrite the given elliptical base in standard form so we may determine the length of the horizontal axis:

$$25x^2+36y^2=900$$

Divide through by $900$:

$$\frac{x^2}{6^2}+\frac{y^2}{5^2}=1$$

Hence, we see the lower limit of integration is $a=-6$ and $b=6$.

The base $B$ of the triangular cross-section for a given $x$ is:

$$B(x)=2y(x)=2\frac{5}{6}\sqrt{6^2-x^2}=\frac{5}{3}\sqrt{6^2-x^2}$$

The height $h$ of the triangular cross-section for a given $x$ is:

$$h(x)=y(x)=\frac{5}{6}\sqrt{6^2-x^2}$$

The area $A$ of the triangular cross-section for a given $x$ is:

$$A(x)=\frac{1}{2}B(x)h(x)=\frac{25}{36}\left(6^2-x^2 \right)$$

Hence, the volume of the solid is given by:

$$V=\frac{25}{36}\int_{-6}^{6}6^2-x^2\,dx=\frac{25}{16}\int_{0}^{6}6^2-x^2\,dx$$

Note: the integrand is an even function, therefore we may apply the even function rule.

Applying the FTOC, we find:

$$V=\frac{25}{18}\left[6^2x-\frac{1}{3}x^3 \right]_0^6=\frac{25}{18}\cdot6^3\left(1-\frac{1}{3} \right)=200$$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top