MHB Aju051000's questions at Yahoo Answers involving trigonometry

  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Trigonometry
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here are the questions:

Trigonometry help please!?

Ok so our teacher gave us 34 questions to do for an assignment and I got all of them except two :( Please help me figure these out!

A two-person tent is to be made so that the height at the center is a = 4 feet (see the figure below). If the sides of the tent are to meet the ground at an angle 60°, and the tent is to be b = 8 feet in length, how many square feet of material will be needed to make the tent? (Assume that the tent has a floor and is closed at both ends, and give your answer in exact form.)

The figure below shows a walkway with a handrail. Angle α is the angle between the walkway and the horizontal, while angle β is the angle between the vertical posts of the handrail and the walkway. Use the figure below to work the problem. (Assume that the vertical posts are perpendicular to the horizontal.)
Find α if β = 62°.

thank you so so much!

I have posted a link there to this topic so the OP can see my work.
 
Mathematics news on Phys.org
Hello aju051000,

1.) I would first draw a diagram:

View attachment 1246

We are given the following:

$$a=4\text{ ft},\,b=8\text{ ft},\,\theta=60^{\circ}$$

So, we need to find the $s$ and $w$. We may use:

$$\tan\left(60^{\circ} \right)=\frac{a}{w/2}=\frac{2a}{w}$$

$$w=2a\cot\left(60^{\circ} \right)=\frac{8}{\sqrt{3}}\text{ ft}$$

We should recognize that the triangular ends of the tent are equilateral (and so $s=w$), but if we didn't we could write:

$$\sin\left(60^{\circ} \right)=\frac{a}{s}$$

$$s=a\csc\left(60^{\circ} \right)=\frac{8}{\sqrt{3}}\text{ ft}$$

So, to find the surface area of the tent, we see that there are two congruent triangles and 3 congruent rectangles.

The area of the two triangles is:

$$A_T=2\cdot\frac{1}{2}\cdot\frac{8}{\sqrt{3}}\text{ ft}\cdot4\text{ ft}=\frac{32}{\sqrt{3}}\text{ ft}^2$$

The area of the three rectangles is:

$$A_R=3\cdot\frac{8}{\sqrt{3}}\text{ ft}\cdot8\text{ ft}=64\sqrt{3}\text{ ft}^2$$

Hence, the total surface area $A$ of the tent is:

$$A=A_T+A_R=\frac{32}{\sqrt{3}}\text{ ft}^2+64\sqrt{3}\text{ ft}^2=\frac{224}{\sqrt{3}}\text{ ft}^2$$

2.) Again, let's first draw a diagram:

View attachment 1247

We can now easily see that $\alpha$ and $\beta$ are complementary, hence:

$$\alpha+\beta=90^{\circ}$$

$$\alpha=90^{\circ}-\beta$$

With $\beta=62^{\circ}$, we find:

$$\alpha=(90-62)^{\circ}=28^{\circ}$$
 

Attachments

  • tent.jpg
    tent.jpg
    7.4 KB · Views: 115
  • walkway.jpg
    walkway.jpg
    5.1 KB · Views: 107
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top