MHB Alexander's question via email about Newton's Method

AI Thread Summary
Alexander inquires about applying Newton's Method to solve the equation e^(1.2x) = 1.5 + 2.5cos²(x) starting with an initial estimate of x₀ = 1. The equation is reformulated to f(x) = e^(1.2x) - 1.5 - 2.5cos²(x) = 0. The derivative is calculated as f'(x) = 1.2e^(1.2x) + 5sin(x)cos(x). After three iterations using Newton's Method, the approximate root found is x₃ = 0.81797.
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
Alexander asks:

Apply three iterations of Newton's Method to find an approximate solution of the equation

$\displaystyle \mathrm{e}^{1.2\,x} = 1.5 + 2.5\cos^2{\left( x \right) } $

if your initial estimate is $\displaystyle x_0 = 1 $.

What solution do you get?
 

Attachments

  • nm1.jpg
    nm1.jpg
    30.8 KB · Views: 159
  • nm2.jpg
    nm2.jpg
    24.7 KB · Views: 169
Last edited by a moderator:
Mathematics news on Phys.org
@Prove It answers:

Newton's Method solves an equation of the form $\displaystyle f\left( x \right) = 0 $, so we need to rewrite the equation as

$\displaystyle \mathrm{e}^{1.2\,x} - 1.5 - 2.5\cos^2{\left( x \right) } = 0 $

Thus $\displaystyle f\left( x \right) = \mathrm{e}^{1.2\,x} - 1.5 - 2.5\cos^2{\left( x \right) }$.

Newton's Method is: $\displaystyle x_{n+1} = x_n - \frac{f\left( x_n \right) }{f'\left( x_n \right) } $

We will need the derivative, $\displaystyle f'\left( x \right) = 1.2\,\mathrm{e}^{1.2\,x} + 5\sin{\left( x \right) }\cos{\left( x \right) } $.I have used my CAS to do this problem:

View attachment 9644

View attachment 9645

So after three iterations the root is approximately $\displaystyle x_3 = 0.81797 $.
 
Last edited:
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top