MHB Algebraic expression simplification 2(2u+v)/u = 4(v^2-4u^2)/3u^2

  • Thread starter Thread starter Nightspider
  • Start date Start date
  • Tags Tags
    Expression
Click For Summary
The discussion focuses on simplifying the algebraic expression 2(2u+v)/u = 4(v^2-4u^2)/3u^2, which is expected to simplify to 3u = 2(v-2u). The user struggles with the simplification process despite trying various methods, including rearranging and factorization. A solution is provided, demonstrating that multiplying both sides by 3u^2 and applying the difference of squares leads to the desired expression. The final result, 3u = 2(v - 2u), is confirmed to be valid under the condition that v + 2u is not equal to zero. This exchange highlights the importance of understanding algebraic manipulation in relation to physics assignments.
Nightspider
Messages
2
Reaction score
0
Hi All

I am trying to simplify an algebraic expression, I know what the expression should simplify to but I am struggling to simplify it.

The expression is: 2(2u+v)/u = 4(v^2-4u^2)/3u^2

and it is supposed to simplify to: 3u = 2(v-2u)

I have approached this problem from various angles by rearranging the expression and factorization but I can't seem to simplify it. Any pointers would be greatly appreciated. This is my first time posting on a forum so if I have not followed any of the rules of the forum please advise me. In the interest of transparency this is part of an assignment question from a module in a part time Physics degree I am doing as a mature student. For the purposes of this assignment I believe the important thing is to understand the Physics hence the fact that I am asking for some help with the math's. That being said I spent a significant amount of time trying to understand the math's before posting here.

Many Thanks
 
Mathematics news on Phys.org
Nightspider said:
Hi All

I am trying to simplify an algebraic expression, I know what the expression should simplify to but I am struggling to simplify it.

The expression is: 2(2u+v)/u = 4(v^2-4u^2)/3u^2

and it is supposed to simplify to: 3u = 2(v-2u)

I have approached this problem from various angles by rearranging the expression and factorization but I can't seem to simplify it. Any pointers would be greatly appreciated. This is my first time posting on a forum so if I have not followed any of the rules of the forum please advise me. In the interest of transparency this is part of an assignment question from a module in a part time Physics degree I am doing as a mature student. For the purposes of this assignment I believe the important thing is to understand the Physics hence the fact that I am asking for some help with the math's. That being said I spent a significant amount of time trying to understand the math's before posting here.

Many Thanks

So we have, $ \dfrac{2(v + 2u)}{u} = \dfrac{4(v^2-4u^2)}{3u^2}$. If we multiply both sides by $3u^2$ we obtain,

$ 6u(v + 2u)= 4(v^2-4u^2)$.

Now the right hand side can be expressed as: $4(v^2 - (2u)^2) = 4(v - 2u)(v + 2u)$. This is called the difference of two squares, and when first starting out, it isn't necessarily an obvious step.

Continuing,

$ 6u(v + 2u)= 4(v - 2u)(v + 2u)$,

now if we divide by $2(v + 2u)$ we arrive at,

$ 3u = \dfrac{\cancelto{2}{4}(v - 2u) \cancel{(v + 2u)}}{\cancel{2} \cancel{(v + 2u)}}$ which is desired expression,

$3u = 2(v - 2u)$.
 
Notice that this equivalence is true only if [math]v+ 2u\ne 0[/math].
 
Brilliant many thanks. Seems easy once someone who knows how shows you but I spent quite some time looking at it. Your swift reply is very much appreciated.

Thank You
 
$7u=2v$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

Replies
3
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
23
Views
2K
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K