Algebraic Proofs and Verifying identities

  • Context: MHB 
  • Thread starter Thread starter abbarajum
  • Start date Start date
  • Tags Tags
    identities Proofs
Click For Summary

Discussion Overview

The discussion revolves around an algebraic proof involving trigonometric identities, specifically the equation sin43x - cos43x = 1 - 2cos23x. Participants seek guidance on proving the equality and explore various approaches to manipulate the equation.

Discussion Character

  • Homework-related
  • Mathematical reasoning
  • Technical explanation
  • Exploratory

Main Points Raised

  • One participant expresses difficulty in proving the equation and describes their attempts to manipulate both sides, starting with the right-hand side and then the left-hand side.
  • Another participant suggests substituting sin^2(3x) = 1 - cos^2(3x) to simplify the expression, indicating that this could lead to cancellation of terms.
  • A later reply introduces the difference of squares identity, proposing that sin^4(3x) - cos^4(3x) can be factored to aid in the proof.
  • Participants discuss the complexity of the problem and share their thought processes, with one participant expressing a sense of being stuck and uncertain about their approach.
  • There is a suggestion to focus on using cos(3x) throughout to simplify the problem further.

Areas of Agreement / Disagreement

Participants do not reach a consensus on a single approach to the problem, as multiple methods are proposed and explored. Some participants express uncertainty about their methods, while others suggest alternative strategies.

Contextual Notes

Participants mention various identities and formulas, but there is no resolution on the best method to prove the equality. The discussion reflects differing levels of confidence and understanding regarding the algebraic manipulations involved.

Who May Find This Useful

This discussion may be useful for students seeking help with algebraic proofs involving trigonometric identities, as well as those interested in exploring different methods of manipulation in mathematical reasoning.

abbarajum
Messages
5
Reaction score
0
Hey all! I am having some trouble with a certain problem on my homework. I would like some guidance. I have to prove one side of the equation is equal to the other, as you may know, as this is an algebraic proof. This in itself isn't too hard. The hard part is just this one particular problem. I may be going about this the wrong way... but the problem seems really complex.

Statement to prove: sin43x - cos43x = 1 - 2cos23x

I first tried starting with the right hand side.

1 - 2cos23x = - (2cos23x - 1)

- (2cos23x - 1) = - cos2(3x)

I don't know if I am allowed to call that - cos6x, but I did. And I looked up the formula for cos6x, which is:

32cos6x - 48 cos4x + 18 cos2x - 1

Therefore, - cos6x = 1- 32cos6x + 48 cos4x - 18 cos2x

I even tried expanding cos3x first, then squaring it. I got the same exact terms, and wasn't really sure what to do with them:

1 - 2cos23x = 1 - 2 (4cos3x - 3cosx)2

1 - 2 (4cos3x - 3cosx)2 = 1 - 2 (16cos6x - 24cos4x + 9cos2x)

1 - 2 (16cos6x - 24cos4x + 9cos2x) = 1 - 32cos6x + 48cos4x - 18cos2x

So I got stuck there, and decided to go with the left hand side.

Starting with the LHS:

sin43x - cos43x = (3sinx - 4sin3x)4 - (4cos3 - 3cosx)4

So, I tried to use that formula for when you have (a - b)4, and here's what I ended up getting:

(81sin4x - 432sin6x + 864sin8x - 768sin10x + 256sin12x) - (256cos12x - 768cos10x + 864cos8x - 432cos6x +81cos4x)

Then, expanding further and rearranging (from smallest degrees to largest degrees):

81sin4x - 81cos4x - 432sin6x + 432cos6x + 864sin8x - 864cos8x - 768sin10x + 768cos10x + 256sin12x - 256cos12x

So I am pretty much stuck here. I mean, I see a pattern when I begin with the LHS, but I'm not sure if I am on the right track. Am I missing something, or am I overthinking? Am I way off? Or did I just make a little mistake? Or can I go further?

I will be happy to clarify something - this can be weird to type out.

Thanks!
 
Last edited:
Physics news on Phys.org
abbarajum said:
Hey all! I am having some trouble with a certain problem on my homework. I would like some guidance. I have to prove one side of the equation is equal to the other, as you may know, as this is an algebraic proof. This in itself isn't too hard. The hard part is just this one particular problem. I may be going about this the wrong way... but the problem seems really complex.

Statement to prove: sin43x - cos43x = 1 - 2cos23x

I first tried starting with the right hand side.

1 - 2cos23x = - (2cos23x - 1)

- (2cos23x - 1) = - cos2(3x)

I don't know if I am allowed to call that - cos6x, but I did. And I looked up the formula for cos6x, which is:

32cos6x - 48 cos4x + 18 cos2x - 1

Therefore, - cos6x = 1- 32cos6x + 48 cos4x - 18 cos2x

I even tried expanding cos3x first, then squaring it. I got the same exact terms, and wasn't really sure what to do with them:

1 - 2cos23x = 1 - 2 (4cos3x - 3cosx)2

1 - 2 (4cos3x - 3cosx)2 = 1 - 2 (16cos6x - 24cos4x + 9cos2x)

1 - 2 (16cos6x - 24cos4x + 9cos2x) = 1 - 32cos6x + 48cos4x - 18cos2x

So I got stuck there, and decided to go with the left hand side.

Starting with the LHS:

sin43x - cos43x = (3sinx - 4sin3x)4 - (4cos3 - 3cosx)4

So, I tried to use that formula for when you have (a - b)4, and here's what I ended up getting:

(81sin4x - 432sin6x + 864sin8x - 768sin10x + 256sin12x) - (256cos12x - 768cos10x + 864cos8x - 432cos6x +81cos4x)

Then, expanding further and rearranging (from smallest degrees to largest degrees):

81sin4x - 81cos4x - 432sin6x + 432cos6x + 864sin8x - 864cos8x - 768sin10x + 768cos10x + 256sin12x - 256cos12x

So I am pretty much stuck here. I mean, I see a pattern when I begin with the LHS, but I'm not sure if I am on the right track. Am I missing something, or am I overthinking? Am I way off? Or did I just make a little mistake? Or can I go further?

I will be happy to clarify something - this can be weird to type out.

Thanks!

Hi abbarajum! Welcome to MHB! :)

I guess you can do it like that, but as you can see it becomes long and complex.

How about substituting:
$$\sin^2(3x) = 1 - \cos^2(3x)$$
Then you have $\cos(3x)$ everywhere and no other trig functions.
They should cancel then.
 
abbarajum said:
Hey all! I am having some trouble with a certain problem on my homework. I would like some guidance. I have to prove one side of the equation is equal to the other, as you may know, as this is an algebraic proof. This in itself isn't too hard. The hard part is just this one particular problem. I may be going about this the wrong way... but the problem seems really complex.

Statement to prove: sin43x - cos43x = 1 - 2cos23x

I first tried starting with the right hand side.

1 - 2cos23x = - (2cos23x - 1)

- (2cos23x - 1) = - cos2(3x)

I don't know if I am allowed to call that - cos6x, but I did. And I looked up the formula for cos6x, which is:

32cos6x - 48 cos4x + 18 cos2x - 1

Therefore, - cos6x = 1- 32cos6x + 48 cos4x - 18 cos2x

I even tried expanding cos3x first, then squaring it. I got the same exact terms, and wasn't really sure what to do with them:

1 - 2cos23x = 1 - 2 (4cos3x - 3cosx)2

1 - 2 (4cos3x - 3cosx)2 = 1 - 2 (16cos6x - 24cos4x + 9cos2x)

1 - 2 (16cos6x - 24cos4x + 9cos2x) = 1 - 32cos6x + 48cos4x - 18cos2x

So I got stuck there, and decided to go with the left hand side.

Starting with the LHS:

sin43x - cos43x = (3sinx - 4sin3x)4 - (4cos3 - 3cosx)4

So, I tried to use that formula for when you have (a - b)4, and here's what I ended up getting:

(81sin4x - 432sin6x + 864sin8x - 768sin10x + 256sin12x) - (256cos12x - 768cos10x + 864cos8x - 432cos6x +81cos4x)

Then, expanding further and rearranging (from smallest degrees to largest degrees):

81sin4x - 81cos4x - 432sin6x + 432cos6x + 864sin8x - 864cos8x - 768sin10x + 768cos10x + 256sin12x - 256cos12x

So I am pretty much stuck here. I mean, I see a pattern when I begin with the LHS, but I'm not sure if I am on the right track. Am I missing something, or am I overthinking? Am I way off? Or did I just make a little mistake? Or can I go further?

I will be happy to clarify something - this can be weird to type out.

Thanks!

Hi abbarajum,

If you consider the difference of squares identity $a^2 - b^2 = (a - b)(a + b)$, you can write

$$\sin^4 3x - \cos^4 3x = (\sin^2 3x - \cos^2 3x)(\sin^2 3x + \cos^2 3x).$$

Use the Pythagorean identity $\sin^2 \theta + \cos^2 \theta = 1$ to simplify the RHS of the above equation to $1 - 2\cos^2 3x$.
 
I like Serena said:
Hi abbarajum! Welcome to MHB! :)

I guess you can do it like that, but as you can see it becomes long and complex.

How about substituting:
$$\sin^2(3x) = 1 - \cos^2(3x)$$
Then you have $\cos(3x)$ everywhere and no other trig functions.
They should cancel then.

Hi, I like Serena!

Thanks for your response.

Where would you substitute sin23x? Would you substitute it on the right hand side, so that:

1 - 2cos23x = 2sin23x

Thanks again.

(Sorry if this question seems a little silly.)

- - - Updated - - -

Euge said:
Hi abbarajum,

If you consider the difference of squares identity $a^2 - b^2 = (a - b)(a + b)$, you can write

$$\sin^4 3x - \cos^4 3x = (\sin^2 3x - \cos^2 3x)(\sin^2 3x + \cos^2 3x).$$

Use the Pythagorean identity $\sin^2 \theta + \cos^2 \theta = 1$ to simplify the RHS of the above equation to $1 - 2\cos^2 3x$.

Hi, Euge.

Ugh, that makes it so much easier! Why didn't I think of that earlier?

Thanks so much! :)
 
abbarajum said:
Hi, I like Serena!

Thanks for your response.

Where would you substitute sin23x? Would you substitute it on the right hand side, so that:

1 - 2cos23x = 2sin23x

Thanks again.

(Sorry if this question seems a little silly.)

I suggest doing it on the LHS:
$$\sin^4(3x) - \cos^4(3x) = (\sin^2(3x))^2 - \cos^4(3x)
= (1 - \cos^2(3x))^2 - \cos^4(3x)$$
Or you can do it as Euge suggested.
 
Okay, I got it now - way easier than I originally thought it to be.

Thanks for both of your responses. I really appreciate them.

Have a great day!
 

Similar threads

  • · Replies 25 ·
Replies
25
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 26 ·
Replies
26
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 28 ·
Replies
28
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K