ChaoticLlama
- 58
- 0
I need to determine an algebraic form for arcsech(x) = ?
So far what I've come up with is as follows:
\L\<br /> \begin{array}{l}<br /> y = \frac{2}{{e^x + e^{ - x} }} \\ <br /> <br /> y = \frac{2}{{e^x + e^{ - x} }}\left( {\frac{{e^x }}{{e^x }}} \right) \\ <br /> <br /> y = \frac{{2e^x }}{{e^{2x} + 1}} \\ <br /> <br /> ye^{2x} - 2e^x + y = 0 \\ <br /> \end{array}<br />
Need to continue solving for x, thanks for any suggestions.
So far what I've come up with is as follows:
\L\<br /> \begin{array}{l}<br /> y = \frac{2}{{e^x + e^{ - x} }} \\ <br /> <br /> y = \frac{2}{{e^x + e^{ - x} }}\left( {\frac{{e^x }}{{e^x }}} \right) \\ <br /> <br /> y = \frac{{2e^x }}{{e^{2x} + 1}} \\ <br /> <br /> ye^{2x} - 2e^x + y = 0 \\ <br /> \end{array}<br />
Need to continue solving for x, thanks for any suggestions.
Last edited: