murshid_islam
- 468
- 21
- Homework Statement
- To determine whether a series is convergent using the Alternating Series Test
- Relevant Equations
- [tex]\sum\limits_{n=1}^{\infty} (-1)^n\frac{\sqrt n}{2n+3}[/tex]
The Alternating series test has to be used to determine whether this series converges or diverges: \sum\limits_{n=1}^{\infty} (-1)^n\frac{\sqrt n}{2n+3}
Here's what I have done:
Let a_n = \frac{\sqrt n}{2n+3}. Therefore, a_{n+1} = \frac{\sqrt {n+1}}{2n+5}
Now, for a_{n+1} to be less than or equal to a_n \\,
\frac{\sqrt {n+1}}{2n+5} \leq \frac{\sqrt n}{2n+3} \\
\Rightarrow \sqrt {\frac{n+1}{n}} \leq \frac{2n+5}{2n+3} < \frac{4n+6}{2n+3} \\
\Rightarrow \sqrt {\frac{n+1}{n}} < 2 \\
\Rightarrow \frac{n+1}{n} < 4 \\
\Rightarrow 3n > 1 \\
\Rightarrow n > \frac{1}{3}
Therefore, a_{n+1} \leq a_n for all n \geq 1
And \lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{\sqrt n}{2n+3} = \lim_{n \to \infty} \frac{1}{2 \sqrt n+ \frac{3}{\sqrt n}} = 0
Therefore, by Alternating Series Test, the series is convergent.
Is this ok?
.
Here's what I have done:
Let a_n = \frac{\sqrt n}{2n+3}. Therefore, a_{n+1} = \frac{\sqrt {n+1}}{2n+5}
Now, for a_{n+1} to be less than or equal to a_n \\,
\frac{\sqrt {n+1}}{2n+5} \leq \frac{\sqrt n}{2n+3} \\
\Rightarrow \sqrt {\frac{n+1}{n}} \leq \frac{2n+5}{2n+3} < \frac{4n+6}{2n+3} \\
\Rightarrow \sqrt {\frac{n+1}{n}} < 2 \\
\Rightarrow \frac{n+1}{n} < 4 \\
\Rightarrow 3n > 1 \\
\Rightarrow n > \frac{1}{3}
Therefore, a_{n+1} \leq a_n for all n \geq 1
And \lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{\sqrt n}{2n+3} = \lim_{n \to \infty} \frac{1}{2 \sqrt n+ \frac{3}{\sqrt n}} = 0
Therefore, by Alternating Series Test, the series is convergent.
Is this ok?
.