MHB Amanda's question at Yahoo Answers (Eigenvalues and eigenvectors)

  • Thread starter Thread starter Fernando Revilla
  • Start date Start date
  • Tags Tags
    Eigenvectors
Click For Summary
The discussion revolves around finding the eigenvectors corresponding to the eigenvalue λ = -1 for the given matrix A. The eigenvectors identified are (-1, 1, 0) and (-1, 0, 1), which are derived from the kernel of the matrix A + I. The confusion arises from the transformation of the matrix to its reduced form, which does not directly yield the eigenvectors. The calculations confirm that the eigenspace corresponding to λ = -1 has a dimension of 2, leading to the two identified eigenvectors. Understanding the relationship between eigenvalues and the kernel of the modified matrix is crucial for solving such problems.
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
Here is the question:

So, I'm attempting to work on this question:

Given that matrix A =
0 1 1
1 0 1
1 1 0

and has λ = -1 as one of its eigenvalues, find the corresponding eigenvectors.

The answers are
-1
1
0

and

-1
0
1

BUT.. I don't understand how they got that because can't you bring it down to the reduced form of
1 0 0
0 1 0
0 0 1

So how do you get the corresponding eigenvalues from that? I'm so confused! Help please :)

Here is a link to the question:

How to I find corresponding eigenvectors? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello Amanda,

I don't understand either how they got those eigenvalues, surely is a typo. Using the transformations $R_2\to R_2-R_1$, $R_3\to R_3-R_1$ and $C_1\to C_1+C_2+C_3$ we get: $$\begin{aligned}
\begin{vmatrix}{-\lambda}&{\;\;1}&{\;\;1}\\{\;\;1}&{-\lambda}&{\;\;1}\\{\;\;1}&{\;\;1}&{-\lambda}\end{vmatrix}&=\begin{vmatrix}{-\lambda}&{\;\;1}&{\;\;1}\\{\;\;1+\lambda}&{-\lambda}-1&{\;\;0}\\{\;\;1+\lambda}&{\;\;0}&{-\lambda-1}\end{vmatrix}\\&=\begin{vmatrix}{-\lambda+2}&{\;\;1}&{\;\;1}\\{\;\;0}&{-\lambda}-1&{\;\;0}\\{\;\;0}&{\;\;0}&{-\lambda-1}\end{vmatrix}\\&=(-\lambda+2)(\lambda+1)^2=0\\&\Leftrightarrow \lambda=2\mbox{ (simple) }\vee \;\lambda=-1\mbox{ (double) }
\end{aligned}$$ The eigenvectors are: $$\ker (A-2I)\equiv \left \{ \begin{matrix}-2x_1+x_2+x_3=0\\x_1-2x_2+x_3=0\\x_1+x_2-2x_3=0\end{matrix}\right. $$ As $\lambda=2$ is simple, $\dim(\ker(A-2I))=1$ and easily we find a basis of this eigenspace: $B_2=\{(1,1,1)\}$. On the other hand: $$\ker (A+I)\equiv \left \{ \begin{matrix}x_1+x_2+x_3=0\\x_1+x_2+x_3=0\\x_1+x_2+x_3=0\end{matrix}\right.$$ Now, $\dim(\ker(A+I))=3-\mbox{rank }(A+I)=3-1=2$ and easily we find a basis of this eigenspace: $B_{-1}=\{(-1,1,0),(-1,0,1)\}$.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
33
Views
937
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K