Amplifier gain in resonant RLC circuit

Click For Summary

Homework Help Overview

The discussion revolves around the amplifier gain in a resonant RLC circuit, specifically analyzing the gain defined as the ratio of output voltage to input voltage at different frequencies. Participants are exploring the implications of their calculations and the relationships between resistance, inductance, and capacitance.

Discussion Character

  • Exploratory, Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • Participants are attempting to derive equations relating the impedance and gain at specific frequencies. Questions arise regarding the interpretation of signs in their equations and the implications of their results on the values of inductance and capacitance.

Discussion Status

Some participants have provided insights into the relationships between the variables and have made progress in solving the equations. However, there is still uncertainty regarding the selection of signs in the equations, and multiple interpretations of the results are being explored.

Contextual Notes

Participants are working under the constraints of given resistance values and are questioning the assumptions made in their calculations. The discussion reflects a mix of theoretical exploration and practical application of circuit analysis principles.

Meow12
Messages
46
Reaction score
20
Homework Statement
A resonant RLC circuit can be used as an amplifier for a certain band of frequencies around the resonant frequency. Consider a series RLC circuit as an audio band amplifier with an AC voltage source as the input, and the voltage across the 8.0 Ω resistor as the output. The amplifier should have a gain (=output/input) of 0.5 at 200Hz and 4000Hz. What is the required value of the inductor in Henry's? What is the required value of the capacitor in Farad's?
Relevant Equations
At resonance, ##\displaystyle\omega_0=\frac{1}{\sqrt{LC}}##
##\omega=2\pi f##
##\displaystyle A_V=\frac{V_{output}}{V_{input}}##
Amplifier gain ##A_V## is defined as the ratio of an amplifier's output voltage to its input voltage,
i.e. ##\displaystyle\frac{V_R}{V}=\frac{IR}{IZ}=\frac{R}{R}=0.5## at 200 Hz.

But this is absurd. Where have I gone wrong? Please nudge me in the right direction.
 
Physics news on Phys.org
I think I got it!

##R/Z_1=0.5## at ##\omega=2\pi\cdot 200##

##R/Z_2=0.5## at ##\omega=2\pi\cdot 4000##

I have 2 equations and 2 unknowns L and C. (R is given.)
 
Hmm....solving those 2 equations is harder than I expected.

The first equation says that ##Z_1=R/0.5=2R## at ##\omega=400\pi## rad/s

##R^2+(X_L-X_C)^2=4R^2## at ##\omega=400\pi## rad/s

##(X_L-X_C)^2=3R^2=192## at ##\omega=400\pi## rad/s

##\displaystyle\left(\omega L-\frac{1}{\omega C}\right)^2=192## at ##\omega=400\pi## rad/s

##\displaystyle\left(400\pi L-\frac{1}{400\pi C}\right)^2=192##

##\displaystyle 400\pi L-\frac{1}{400\pi C}=\pm 13.856##

Similarly, from the second equation,

##\displaystyle 8000\pi L-\frac{1}{8000\pi C}=\pm 13.856##

But I can't decide which is + and which is -.

Please help!
 
So you get four answers ? All with positive ##\omega##?

[edit] :smile: I mean sensible ##L##, ##C## ?
 
Last edited:
##\displaystyle 8000\pi L-\frac{1}{8000\pi C}=\pm 13.856##

Let us multiply the above equation by 20. We get

##\displaystyle 160000\pi L-\frac{1}{400\pi C}=\pm 13.856\times 20## ----------- (1)

The other equation is

##\displaystyle 400\pi L-\frac{1}{400\pi C}=\pm 13.856## ----------- (2)

Subtracting equation (2) from (1), we get ##159600\pi L## on the left-hand side.

Note that since the left-hand side is positive, the right-hand side also must be positive. Thus we may pick the positive sign in equation (1). ##400\pi C## is going to be extremely small. So, ##\displaystyle\frac{1}{400\pi C}## is going to be extremely large--larger than ##400\pi L##. So, we pick the negative sign in equation (2).

##159600\pi L=13.856\times 20-(-13.856)=13.856\times 21##

##L=5.80E-4## H

Substituting this value of ##L## in one of our equations, we get ##C=5.46E-5## F

Both these values match the ones given by our prof. :)
 
  • Like
Likes   Reactions: BvU
There is so much good stuff in this exercise, I can't help but add a few comments :smile:

The 'gain' expression for this circuit $$A_V = {R\over \sqrt{R^2 +\left (\omega L-{1\over \omega C}\right)^2}}$$simplifies to $$\begin{align*}
A_V &= \omega RC \quad &\text{for}\quad \omega << \omega_0 \\
A_V &= R/(\omega L) \quad &\text{for}\quad \omega >> \omega_0
\end{align*} $$as a plot of ##A## vs frequency shows (log-log plot so that approximations show up as straight lines; also: ##\omega_0 = \sqrt{\omega_2\omega_1} \Rightarrow f_0= 894 Hz##).

1707493114984.png

(Blue horizontal line for ##A_V = 0.5##)

In the exercise circuit, damping is considerable (##\omega_2-\omega_1 > \omega_0## -- I get ##\alpha = 7332\ (1167 \ {\sf\text{Hz}}), \ \zeta = 1.3 ) ## for the points where ##A={1\over 2}\sqrt 2##.

##\ ##
 
  • Like
Likes   Reactions: berkeman

Similar threads

  • · Replies 21 ·
Replies
21
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
Replies
8
Views
2K
  • · Replies 40 ·
2
Replies
40
Views
6K
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
4
Views
6K