MHB Amplitude, Period, frequency and phase angle

AI Thread Summary
The discussion centers on determining the resulting vibration from two simultaneous vibrations: 2cos(ωt) and 3cos(ωt + π/4). The combined expression simplifies to a form involving both cosine and sine components. The transformation involves using the identities for cosine and sine to express the result in the general form n cos(ωt ± α). The final expression indicates that the values for R and α are complex and not straightforward. The thread emphasizes the need for further calculations to finalize the solution.
jenney
Messages
1
Reaction score
0
HELP!

totally lost and confused with this question:
A machine is subject to two vibrations at the same time.
one vibration has the form: 2cosωt and the other vibration has the form: 3 cos(ωt+0.785). (0.785 is actually expressed as pi/4)
determine the resulting vibration and express it in the general form of: n cos(ωt±α)
 
Mathematics news on Phys.org
jenney said:
HELP!

totally lost and confused with this question:
A machine is subject to two vibrations at the same time.
one vibration has the form: 2cosωt and the other vibration has the form: 3 cos(ωt+0.785). (0.785 is actually expressed as pi/4)
determine the resulting vibration and express it in the general form of: n cos(ωt±α)

$2\cos(\omega t) + 3\cos \left(\omega t + \dfrac{\pi}{4} \right)$

$2\cos(\omega t) + 3\left[\cos(\omega t)\cos\left(\dfrac{\pi}{4}\right) - \sin(\omega t)\sin\left(\dfrac{\pi}{4}\right)\right]$

$2\cos(\omega t) + \dfrac{3\sqrt{2}}{2}\left[\cos(\omega t) - \sin(\omega t)\right]$

$\dfrac{4+3\sqrt{2}}{2}\cos(\omega t) - \dfrac{3\sqrt{2}}{2}\sin(\omega t)$note $A\cos{x} + B\sin{x} = R\cos(x - \alpha)$, where ...

$R = \sqrt{A^2+B^2}$ and $\alpha = \arctan\left(\dfrac{B}{A}\right)$

... see what you can do from here. Note that the values for $R$ and $\alpha$ are not "nice".
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top