AN implementation of gauss's law

  • Thread starter Thread starter impendingChaos
  • Start date Start date
  • Tags Tags
    Gauss's law Law
Click For Summary

Homework Help Overview

The discussion revolves around applying Gauss's law to find the electric field generated by a uniformly charged long solid nonconducting cylinder and a surrounding concentric cylindrical tube. The original poster seeks to determine the electric field as a function of distance from the center for various regions defined by the radii of the cylinders.

Discussion Character

  • Exploratory, Conceptual clarification, Mathematical reasoning

Approaches and Questions Raised

  • Participants discuss the need to express the enclosed charge in terms of charge density and volume, with attempts to relate these quantities to the electric field. Questions arise about the necessity of considering the ends of the cylindrical tube in the calculations and the implications of symmetry in applying Gauss's law.

Discussion Status

Participants are actively engaging with the problem, clarifying concepts related to Gauss's law and electric flux. Some guidance has been provided regarding the use of charge density instead of total charge, and there is acknowledgment of the correct approach to neglect the ends of the cylinder when calculating the electric field.

Contextual Notes

There is an emphasis on the assumption that the cylinder is "very long," which influences the treatment of the ends in the calculations. Participants are also navigating the integration process and the implications of using a cylindrical Gaussian surface.

impendingChaos
Messages
24
Reaction score
0
A long solid nonconducting cylinder or radius R1 is uniformly charged with a charge density (p). It is surrounded by a concentric cylindrical tube or innder radius R2 and outer radius R3, it also has uniform charge density, p. Before I can go on i need to find the electric field as a function of the distance r from the center for (a) 0<r<R1 (b) R1<r<R2 (c) R2<r<R3 and (d) r>R3)

The integration is screwing me up, thanks
Kael.
 
Physics news on Phys.org
To state my current attempt:
for part (a) i know
p=Q/4*pi*permittivity of free space*R1^2*L
V(enclosed)=pi*r^2*L
so p*V(enclosed)= the ratio (r^2/R1^2)Q which is the total Q enclosed
 
You shouldn't need to do any integration. Hint: Write Gauss's law, which will give you the total flux through a surface in terms of the enclosed charge. (The enclosed charge is just the charge density times the volume.) Use a cylindrical Gaussian surface, of course, to take advantage of symmetry.
 
Ok ok I'm starting to see it, so i would have
(permittivity of free space= Eo)

int(E) x dA = Q(enc)/Eo
EA= (r^2/R1^2)Q/Eo
then dividing both sides by the area would give E?
and if so would I need to use the left side of the equation divided by the area of the face of the cylinder plus the equation divided by the area of the length of the cylinder?
 
impendingChaos said:
Ok ok I'm starting to see it, so i would have
(permittivity of free space= Eo)

int(E) x dA = Q(enc)/Eo
OK.
EA= (r^2/R1^2)Q/Eo
Almost there. Get rid of Q. You are given charge density, not Q. (As I suggested earlier, express the enclosed charge as charge density times the volume.)

Express area and volume in terms of r.
 
hmm, well i thought i did that since if
charge density = Q/(4pi*L*R1^2)
and the volume is pi*L*r^2
then multiplying the two would give (Q*r^2)/(4*R1^2)
ok, now I take this Q(enc) and put it Gauss to obtain:
EA=(Q*r^2)/(4*R1^2*Eo)
but you said Q is not present?

In any case I continued from this by divinding the right side by A which would give me my electric field. Now, do I need to do this for the ends AND the length of the tube or are the ends considered negligible since it is "very long." I have solved it and obtained the correct answer but only when excluding the ends of this tube such that
E=pr/2Eo (this is the stated result)
So now, assuming the math was correct, is there a reason I should be considering the ends to be zero?
 
impendingChaos said:
but you said Q is not present?
Well, you tell me. If you aren't given Q, how can your answer be in terms of it? You are given the charge density though. :wink:

In any case I continued from this by divinding the right side by A which would give me my electric field. Now, do I need to do this for the ends AND the length of the tube or are the ends considered negligible since it is "very long." I have solved it and obtained the correct answer but only when excluding the ends of this tube such that
E=pr/2Eo (this is the stated result)
So now, assuming the math was correct, is there a reason I should be considering the ends to be zero?
You are presumably finding the field at positions far enough from the ends so that any non-uniformity of field can be neglected. Your Gaussian surface is a cylindrical section in the middle of the long rod.

When you are finding the electric flux through the Gaussian surface, you are multiplying the area times the component of E perpendicular to that surface. In which case, what would be the flux through the end pieces of that Gaussian cylinder?
 
Zero! :smile:
 
Exactamundo!
 
  • #10
Thanks a lot, I think I can get parts b through c from here!
 

Similar threads

Replies
5
Views
868
  • · Replies 2 ·
Replies
2
Views
6K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 19 ·
Replies
19
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K