MHB An integral representation of the Riemann zeta function

AI Thread Summary
The integral representation of the Riemann zeta function is given by the formula ζ(s) = (2^(s-1)/(1-2^(1-s))) ∫(0 to ∞) (cos(s arctan t)/((1+t²)^(s/2) cosh(πt/2))) dt, valid for all complex s except s=1. The approach involves using analytic continuation and residues to evaluate the integral, initially restricted to Re(s) > 1. The calculation shows that the integral can be expressed in terms of the Dirichlet eta function, leading to the final representation of ζ(s). Additionally, specific values for ζ(0) and ζ(-1) are derived from the integral, yielding ζ(0) = -1/2 and ζ(-1) = -1/12. This integral representation provides a powerful tool for studying the properties of the Riemann zeta function.
polygamma
Messages
227
Reaction score
0
Show that $\displaystyle \zeta(s) = \frac{2^{s-1}}{1-2^{1-s}} \int_{0}^{\infty} \frac{\cos (s \arctan t)}{(1+t^{2})^{s/2} \cosh \left( \frac{\pi t}{2} \right)} \ dt $The cool thing about this representation is that it is valid for all complex values of $s$ excluding $s=1$.

This integral is similar to another integral I recently came across, so I knew immediately how to approach it.
 
Mathematics news on Phys.org
I'm basically going to copy and paste the solution I posted on another forum.
\int_{0}^{\infty} \frac{\cos (s \arctan t)}{(1+t^{2})^{s/2} \cosh \left( \frac{\pi t}{2} \right)} \ dtLet's add the restriction that \text{Re}(s)>1. This can be removed at the end by analytic continuation.\int_{0}^{\infty} \frac{\cos (s \arctan t)}{(1+t^{2})^{s/2} \cosh \left( \frac{\pi t}{2} \right)} \ dt = \frac{1}{2} \ \text{Re} \int_{-\infty}^{\infty} \frac{1}{(1-it)^{s} \cosh \left( \frac{\pi t}{2} \right)} \ dtLet f(z) = \frac{1}{(1-iz)^{s} \cosh \left( \frac{\pi z}{2} \right)} and integrate around a rectangle with vertices at z=N, z=N + 2Ni, z=-N + 2Ni and z=N.Then \frac{1}{2} \ \text{Re} \int_{-\infty}^{\infty} \frac{1}{(1-it)^{s} \cosh \left( \frac{\pi t}{2} \right)} \ dt = \text{Re} \ \pi i \sum_{n=0}^{\infty} \text{Res} [f(z),i(2n+1)]\text{Res} [f(z),i(2n+1)] = \lim_{z \to i(2n+1)} \frac{1}{-is(1-iz)^{s-1} \cosh \left( \frac{\pi z}{2} \right) + (1-iz)^{s} \frac{\pi}{2} \sinh \left( \frac{\pi z}{2} \right)} = \frac{2}{\pi} \frac{(-1)^{n}}{i} \frac{1}{(2+2n)^{s}}

= \frac{2^{1-s}}{\pi} \frac{(-1)^{n}}{i} \frac{1}{(n+1)^{s}}\text{Re} \ \pi i \sum_{n=1}^{\infty} \text{Res} [f(z),i(2n+1)] = 2^{1-s} \eta(s) = 2^{1-s} \Big( 1 - 2^{1-s} \Big) \zeta(s)
So \displaystyle \int_{0}^{\infty} \frac{\cos (s \arctan t)}{(1+t^{2})^{s/2} \cosh \left( \frac{\pi t}{2} \right)} \ dt = 2^{1-s} \Big( 1 - 2^{1-s} \Big) \zeta(s)\implies \zeta(s) = \frac{2^{s-1}}{1-2^{1-s}} \int_{0}^{\infty} \frac{\cos (s \arctan t)}{(1+t^{2})^{s/2} \cosh \left( \frac{\pi t}{2} \right)} \ dt
Notice that you get \zeta(0) = -\frac{1}{2} \int_{0}^{\infty} \frac{1}{\cosh \left( \frac{\pi t}{2} \right)} \ dt = -\frac{1}{2} (1) = -\frac{1}{2}

And \zeta(-1) = -\frac{1}{12} \int_{0}^{\infty} \frac{\cos (\arctan t)}{(1+t^{2})^{-1/2} \cosh \left( \frac{\pi t}{2} \right)} \ dt = - \frac{1}{12} \int_{0}^{\infty} \frac{1}{\cosh \left( \frac{\pi t}{2} \right)} \ dt = - \frac{1}{12}
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top