MHB An integral representation of the Riemann zeta function

Click For Summary
The integral representation of the Riemann zeta function is given by the formula ζ(s) = (2^(s-1)/(1-2^(1-s))) ∫(0 to ∞) (cos(s arctan t)/((1+t²)^(s/2) cosh(πt/2))) dt, valid for all complex s except s=1. The approach involves using analytic continuation and residues to evaluate the integral, initially restricted to Re(s) > 1. The calculation shows that the integral can be expressed in terms of the Dirichlet eta function, leading to the final representation of ζ(s). Additionally, specific values for ζ(0) and ζ(-1) are derived from the integral, yielding ζ(0) = -1/2 and ζ(-1) = -1/12. This integral representation provides a powerful tool for studying the properties of the Riemann zeta function.
polygamma
Messages
227
Reaction score
0
Show that $\displaystyle \zeta(s) = \frac{2^{s-1}}{1-2^{1-s}} \int_{0}^{\infty} \frac{\cos (s \arctan t)}{(1+t^{2})^{s/2} \cosh \left( \frac{\pi t}{2} \right)} \ dt $The cool thing about this representation is that it is valid for all complex values of $s$ excluding $s=1$.

This integral is similar to another integral I recently came across, so I knew immediately how to approach it.
 
Mathematics news on Phys.org
I'm basically going to copy and paste the solution I posted on another forum.
\int_{0}^{\infty} \frac{\cos (s \arctan t)}{(1+t^{2})^{s/2} \cosh \left( \frac{\pi t}{2} \right)} \ dtLet's add the restriction that \text{Re}(s)>1. This can be removed at the end by analytic continuation.\int_{0}^{\infty} \frac{\cos (s \arctan t)}{(1+t^{2})^{s/2} \cosh \left( \frac{\pi t}{2} \right)} \ dt = \frac{1}{2} \ \text{Re} \int_{-\infty}^{\infty} \frac{1}{(1-it)^{s} \cosh \left( \frac{\pi t}{2} \right)} \ dtLet f(z) = \frac{1}{(1-iz)^{s} \cosh \left( \frac{\pi z}{2} \right)} and integrate around a rectangle with vertices at z=N, z=N + 2Ni, z=-N + 2Ni and z=N.Then \frac{1}{2} \ \text{Re} \int_{-\infty}^{\infty} \frac{1}{(1-it)^{s} \cosh \left( \frac{\pi t}{2} \right)} \ dt = \text{Re} \ \pi i \sum_{n=0}^{\infty} \text{Res} [f(z),i(2n+1)]\text{Res} [f(z),i(2n+1)] = \lim_{z \to i(2n+1)} \frac{1}{-is(1-iz)^{s-1} \cosh \left( \frac{\pi z}{2} \right) + (1-iz)^{s} \frac{\pi}{2} \sinh \left( \frac{\pi z}{2} \right)} = \frac{2}{\pi} \frac{(-1)^{n}}{i} \frac{1}{(2+2n)^{s}}

= \frac{2^{1-s}}{\pi} \frac{(-1)^{n}}{i} \frac{1}{(n+1)^{s}}\text{Re} \ \pi i \sum_{n=1}^{\infty} \text{Res} [f(z),i(2n+1)] = 2^{1-s} \eta(s) = 2^{1-s} \Big( 1 - 2^{1-s} \Big) \zeta(s)
So \displaystyle \int_{0}^{\infty} \frac{\cos (s \arctan t)}{(1+t^{2})^{s/2} \cosh \left( \frac{\pi t}{2} \right)} \ dt = 2^{1-s} \Big( 1 - 2^{1-s} \Big) \zeta(s)\implies \zeta(s) = \frac{2^{s-1}}{1-2^{1-s}} \int_{0}^{\infty} \frac{\cos (s \arctan t)}{(1+t^{2})^{s/2} \cosh \left( \frac{\pi t}{2} \right)} \ dt
Notice that you get \zeta(0) = -\frac{1}{2} \int_{0}^{\infty} \frac{1}{\cosh \left( \frac{\pi t}{2} \right)} \ dt = -\frac{1}{2} (1) = -\frac{1}{2}

And \zeta(-1) = -\frac{1}{12} \int_{0}^{\infty} \frac{\cos (\arctan t)}{(1+t^{2})^{-1/2} \cosh \left( \frac{\pi t}{2} \right)} \ dt = - \frac{1}{12} \int_{0}^{\infty} \frac{1}{\cosh \left( \frac{\pi t}{2} \right)} \ dt = - \frac{1}{12}
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 17 ·
Replies
17
Views
1K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 0 ·
Replies
0
Views
3K