MHB An integral representation of the Riemann zeta function

Click For Summary
The integral representation of the Riemann zeta function is given by the formula ζ(s) = (2^(s-1)/(1-2^(1-s))) ∫(0 to ∞) (cos(s arctan t)/((1+t²)^(s/2) cosh(πt/2))) dt, valid for all complex s except s=1. The approach involves using analytic continuation and residues to evaluate the integral, initially restricted to Re(s) > 1. The calculation shows that the integral can be expressed in terms of the Dirichlet eta function, leading to the final representation of ζ(s). Additionally, specific values for ζ(0) and ζ(-1) are derived from the integral, yielding ζ(0) = -1/2 and ζ(-1) = -1/12. This integral representation provides a powerful tool for studying the properties of the Riemann zeta function.
polygamma
Messages
227
Reaction score
0
Show that $\displaystyle \zeta(s) = \frac{2^{s-1}}{1-2^{1-s}} \int_{0}^{\infty} \frac{\cos (s \arctan t)}{(1+t^{2})^{s/2} \cosh \left( \frac{\pi t}{2} \right)} \ dt $The cool thing about this representation is that it is valid for all complex values of $s$ excluding $s=1$.

This integral is similar to another integral I recently came across, so I knew immediately how to approach it.
 
Mathematics news on Phys.org
I'm basically going to copy and paste the solution I posted on another forum.
\int_{0}^{\infty} \frac{\cos (s \arctan t)}{(1+t^{2})^{s/2} \cosh \left( \frac{\pi t}{2} \right)} \ dtLet's add the restriction that \text{Re}(s)>1. This can be removed at the end by analytic continuation.\int_{0}^{\infty} \frac{\cos (s \arctan t)}{(1+t^{2})^{s/2} \cosh \left( \frac{\pi t}{2} \right)} \ dt = \frac{1}{2} \ \text{Re} \int_{-\infty}^{\infty} \frac{1}{(1-it)^{s} \cosh \left( \frac{\pi t}{2} \right)} \ dtLet f(z) = \frac{1}{(1-iz)^{s} \cosh \left( \frac{\pi z}{2} \right)} and integrate around a rectangle with vertices at z=N, z=N + 2Ni, z=-N + 2Ni and z=N.Then \frac{1}{2} \ \text{Re} \int_{-\infty}^{\infty} \frac{1}{(1-it)^{s} \cosh \left( \frac{\pi t}{2} \right)} \ dt = \text{Re} \ \pi i \sum_{n=0}^{\infty} \text{Res} [f(z),i(2n+1)]\text{Res} [f(z),i(2n+1)] = \lim_{z \to i(2n+1)} \frac{1}{-is(1-iz)^{s-1} \cosh \left( \frac{\pi z}{2} \right) + (1-iz)^{s} \frac{\pi}{2} \sinh \left( \frac{\pi z}{2} \right)} = \frac{2}{\pi} \frac{(-1)^{n}}{i} \frac{1}{(2+2n)^{s}}

= \frac{2^{1-s}}{\pi} \frac{(-1)^{n}}{i} \frac{1}{(n+1)^{s}}\text{Re} \ \pi i \sum_{n=1}^{\infty} \text{Res} [f(z),i(2n+1)] = 2^{1-s} \eta(s) = 2^{1-s} \Big( 1 - 2^{1-s} \Big) \zeta(s)
So \displaystyle \int_{0}^{\infty} \frac{\cos (s \arctan t)}{(1+t^{2})^{s/2} \cosh \left( \frac{\pi t}{2} \right)} \ dt = 2^{1-s} \Big( 1 - 2^{1-s} \Big) \zeta(s)\implies \zeta(s) = \frac{2^{s-1}}{1-2^{1-s}} \int_{0}^{\infty} \frac{\cos (s \arctan t)}{(1+t^{2})^{s/2} \cosh \left( \frac{\pi t}{2} \right)} \ dt
Notice that you get \zeta(0) = -\frac{1}{2} \int_{0}^{\infty} \frac{1}{\cosh \left( \frac{\pi t}{2} \right)} \ dt = -\frac{1}{2} (1) = -\frac{1}{2}

And \zeta(-1) = -\frac{1}{12} \int_{0}^{\infty} \frac{\cos (\arctan t)}{(1+t^{2})^{-1/2} \cosh \left( \frac{\pi t}{2} \right)} \ dt = - \frac{1}{12} \int_{0}^{\infty} \frac{1}{\cosh \left( \frac{\pi t}{2} \right)} \ dt = - \frac{1}{12}
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 17 ·
Replies
17
Views
1K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 0 ·
Replies
0
Views
3K