An integral representation of the Riemann zeta function

Click For Summary
SUMMARY

The integral representation of the Riemann zeta function is given by the equation $\displaystyle \zeta(s) = \frac{2^{s-1}}{1-2^{1-s}} \int_{0}^{\infty} \frac{\cos (s \arctan t)}{(1+t^{2})^{s/2} \cosh \left( \frac{\pi t}{2} \right)} \ dt$, which is valid for all complex values of $s$ except $s=1$. The discussion highlights the analytic continuation of the integral, initially defined for $\text{Re}(s) > 1$, and demonstrates the relationship between the zeta function and the Dirichlet eta function. Notably, it concludes that $\zeta(0) = -\frac{1}{2}$ and $\zeta(-1) = -\frac{1}{12}$.

PREREQUISITES
  • Complex analysis, particularly contour integration
  • Understanding of the Riemann zeta function and its properties
  • Familiarity with hyperbolic functions, specifically $\cosh$
  • Knowledge of residues in complex analysis
NEXT STEPS
  • Study the properties of the Riemann zeta function and its analytic continuation
  • Explore contour integration techniques in complex analysis
  • Learn about the Dirichlet eta function and its relationship with the zeta function
  • Investigate applications of integral representations in number theory
USEFUL FOR

Mathematicians, physicists, and students of advanced mathematics interested in complex analysis, number theory, and the properties of special functions.

polygamma
Messages
227
Reaction score
0
Show that $\displaystyle \zeta(s) = \frac{2^{s-1}}{1-2^{1-s}} \int_{0}^{\infty} \frac{\cos (s \arctan t)}{(1+t^{2})^{s/2} \cosh \left( \frac{\pi t}{2} \right)} \ dt $The cool thing about this representation is that it is valid for all complex values of $s$ excluding $s=1$.

This integral is similar to another integral I recently came across, so I knew immediately how to approach it.
 
Physics news on Phys.org
I'm basically going to copy and paste the solution I posted on another forum.
\int_{0}^{\infty} \frac{\cos (s \arctan t)}{(1+t^{2})^{s/2} \cosh \left( \frac{\pi t}{2} \right)} \ dtLet's add the restriction that \text{Re}(s)>1. This can be removed at the end by analytic continuation.\int_{0}^{\infty} \frac{\cos (s \arctan t)}{(1+t^{2})^{s/2} \cosh \left( \frac{\pi t}{2} \right)} \ dt = \frac{1}{2} \ \text{Re} \int_{-\infty}^{\infty} \frac{1}{(1-it)^{s} \cosh \left( \frac{\pi t}{2} \right)} \ dtLet f(z) = \frac{1}{(1-iz)^{s} \cosh \left( \frac{\pi z}{2} \right)} and integrate around a rectangle with vertices at z=N, z=N + 2Ni, z=-N + 2Ni and z=N.Then \frac{1}{2} \ \text{Re} \int_{-\infty}^{\infty} \frac{1}{(1-it)^{s} \cosh \left( \frac{\pi t}{2} \right)} \ dt = \text{Re} \ \pi i \sum_{n=0}^{\infty} \text{Res} [f(z),i(2n+1)]\text{Res} [f(z),i(2n+1)] = \lim_{z \to i(2n+1)} \frac{1}{-is(1-iz)^{s-1} \cosh \left( \frac{\pi z}{2} \right) + (1-iz)^{s} \frac{\pi}{2} \sinh \left( \frac{\pi z}{2} \right)} = \frac{2}{\pi} \frac{(-1)^{n}}{i} \frac{1}{(2+2n)^{s}}

= \frac{2^{1-s}}{\pi} \frac{(-1)^{n}}{i} \frac{1}{(n+1)^{s}}\text{Re} \ \pi i \sum_{n=1}^{\infty} \text{Res} [f(z),i(2n+1)] = 2^{1-s} \eta(s) = 2^{1-s} \Big( 1 - 2^{1-s} \Big) \zeta(s)
So \displaystyle \int_{0}^{\infty} \frac{\cos (s \arctan t)}{(1+t^{2})^{s/2} \cosh \left( \frac{\pi t}{2} \right)} \ dt = 2^{1-s} \Big( 1 - 2^{1-s} \Big) \zeta(s)\implies \zeta(s) = \frac{2^{s-1}}{1-2^{1-s}} \int_{0}^{\infty} \frac{\cos (s \arctan t)}{(1+t^{2})^{s/2} \cosh \left( \frac{\pi t}{2} \right)} \ dt
Notice that you get \zeta(0) = -\frac{1}{2} \int_{0}^{\infty} \frac{1}{\cosh \left( \frac{\pi t}{2} \right)} \ dt = -\frac{1}{2} (1) = -\frac{1}{2}

And \zeta(-1) = -\frac{1}{12} \int_{0}^{\infty} \frac{\cos (\arctan t)}{(1+t^{2})^{-1/2} \cosh \left( \frac{\pi t}{2} \right)} \ dt = - \frac{1}{12} \int_{0}^{\infty} \frac{1}{\cosh \left( \frac{\pi t}{2} \right)} \ dt = - \frac{1}{12}
 

Similar threads

  • · Replies 17 ·
Replies
17
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 10 ·
Replies
10
Views
4K
  • · Replies 14 ·
Replies
14
Views
4K
  • · Replies 17 ·
Replies
17
Views
2K