An m-qubit state, inferring some inequality in QIT

  • Thread starter Thread starter billtodd
  • Start date Start date
  • Tags Tags
    Quantum information
billtodd
Messages
136
Reaction score
33
Homework Statement
Let ##\sigma## be an ##m##-qubit such that ##Trace(\sigma^2)\le \frac{1+\epsilon^2}{2^m}##, then ##D(\sigma , I/2^m)\le \epsilon##
Relevant Equations
##D(\sigma,\rho)=1/2 Trace(|\sigma-\rho|)## where ##\rho,\sigma## are quantum states; and there's an inequality between this and the fidelity, i.e. ##D(\sigma,\rho)\le \sqrt{1-F(\sigma,\rho)^2}##, where ##F(\sigma ,\rho)=Trace(\sqrt{\sigma^{1/2}\rho \sigma^{1/2}})##.
I am not sure how to show this inequality, I guess what is the relation between ##Trace(\sigma^2)## and ##Trace(\sigma)##?
Here's my latest attempt, let me know how to proceed?
$$D(\sigma, I/2^m)\le \sqrt{1-F(\sigma,I/2^m)^2}=\sqrt{1-(Tr(\sqrt{\sigma }))^2/2^m}$$
 
Last edited:
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
It's given a gas of particles all identical which has T fixed and spin S. Let's ##g(\epsilon)## the density of orbital states and ##g(\epsilon) = g_0## for ##\forall \epsilon \in [\epsilon_0, \epsilon_1]##, zero otherwise. How to compute the number of accessible quantum states of one particle? This is my attempt, and I suspect that is not good. Let S=0 and then bosons in a system. Simply, if we have the density of orbitals we have to integrate ##g(\epsilon)## and we have...
Back
Top