An m-qubit state, inferring some inequality in QIT

  • Thread starter Thread starter billtodd
  • Start date Start date
  • Tags Tags
    Quantum information
Click For Summary
The discussion revolves around demonstrating an inequality related to m-qubit states in quantum information theory (QIT). The main focus is on the relationship between the trace of the squared density matrix, Trace(σ²), and the trace of the density matrix, Trace(σ). A proposed inequality is presented, linking the distance D(σ, I/2^m) to the fidelity F(σ, I/2^m). Clarification is sought on how to effectively proceed with proving this inequality. The conversation highlights the complexities of quantum state analysis and the importance of these relationships in QIT.
billtodd
Messages
136
Reaction score
33
Homework Statement
Let ##\sigma## be an ##m##-qubit such that ##Trace(\sigma^2)\le \frac{1+\epsilon^2}{2^m}##, then ##D(\sigma , I/2^m)\le \epsilon##
Relevant Equations
##D(\sigma,\rho)=1/2 Trace(|\sigma-\rho|)## where ##\rho,\sigma## are quantum states; and there's an inequality between this and the fidelity, i.e. ##D(\sigma,\rho)\le \sqrt{1-F(\sigma,\rho)^2}##, where ##F(\sigma ,\rho)=Trace(\sqrt{\sigma^{1/2}\rho \sigma^{1/2}})##.
I am not sure how to show this inequality, I guess what is the relation between ##Trace(\sigma^2)## and ##Trace(\sigma)##?
Here's my latest attempt, let me know how to proceed?
$$D(\sigma, I/2^m)\le \sqrt{1-F(\sigma,I/2^m)^2}=\sqrt{1-(Tr(\sqrt{\sigma }))^2/2^m}$$
 
Last edited:
At first, I derived that: $$\nabla \frac 1{\mu}=-\frac 1{{\mu}^3}\left((1-\beta^2)+\frac{\dot{\vec\beta}\cdot\vec R}c\right)\vec R$$ (dot means differentiation with respect to ##t'##). I assume this result is true because it gives valid result for magnetic field. To find electric field one should also derive partial derivative of ##\vec A## with respect to ##t##. I've used chain rule, substituted ##\vec A## and used derivative of product formula. $$\frac {\partial \vec A}{\partial t}=\frac...