1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Analysis Help; proofs via axioms

  1. Sep 17, 2010 #1


    User Avatar
    Gold Member

    Analysis Help; proofs via axioms :)

    1. The problem statement:

    Prove that for any real numbers a, b, c,
    [tex](a+b+c)^2\leq3*(a^2 +b^2+c^2)[/tex]​

    2. These are the axioms we are permitted to use:

    01) Exactly one of these hold: a<b, a=b, or b<a
    02) If a<b, and b<c, then a<c
    03) If a<b, then a+c < b+c for every c
    04) If a<b and 0<c, then ac<bc.

    3. The attempt at a solution

    It follows from problem number 1, that
    [tex]0\leq(a + b)^2[/tex]

    So can we say that
    [tex]0\leq(a + b + c)^2[/tex]
    and would this help me to solve the proof? I'm having a great deal of trouble getting used to thinking like this; I'm very used to thinking combinatorially. :blushing:
    I do know that this is a special case of the Cauchy-Schwartz Sequence where we have
    [tex](a_{1}+a_{2}+a_{3})^2\leq3*(a_{1}^2 +a_{2}^2+a_{3}^2)[/tex]​
    I'm just not allowed to use that fact to proove it :cool:

    Any help/hints would be greatly appreciated, and I always do my best to return the favor! Thank you so much for your time!
  2. jcsd
  3. Sep 17, 2010 #2
    Re: Analysis Help; proofs via axioms :)

    A good way to work on a problem like this is to simplify it the only ways you know how and then work backwards, maybe modifying your work, to justify your steps. Expand the left hand side. You will get three squares and a multiple of 2. Now use your property (3) to cancel out the three squares and consider property (4). I hope things have cleared up after this. After you've seen the way you can work backwards to justify your steps.
  4. Sep 18, 2010 #3


    User Avatar
    Gold Member

    Re: Analysis Help; proofs via axioms :)

    Haha yes, this is more than helpful. Thank you for this hint, it will be well used, and is well appreciated.
  5. Sep 18, 2010 #4
    Re: Analysis Help; proofs via axioms :)

    Great! Glad you have worked it out
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook