Proving a property of a Dedekind cut

In summary, a Dedekind cut is a pair ##(A,B)## of subsets of rationals that satisfy certain properties. In particular, for any given cut, Property 5 holds, which states that if ##b \not\in B##, then either ##b=0## or ##b^2 \leq 2##. The given proof for this property is correct, but it should specify that ##b## is positive and consider both positive and negative cases for ##a##.
  • #1
351
81
Homework Statement
##A = \{x: x\lt 0 or x^2 \lt 2\}##
##B = \{x: x \gt 0 ~and~x^2 \gt 2\}##

Prove that ##(A,B)## is a Dedekind cut.
Relevant Equations
There are some properties which a cut must have.
A Dedekind cut is a pair ##(A,B)##, where ##A## and ##B## are both subsets of rationals. This pair has to satisfy the following properties
  1. A is nonempty
  2. B is nonempty
  3. If ##a\in A## and ##c \lt a## then ##c \in A##
  4. If ##b \in B## and ## c\gt b## then ##c \in B##
  5. If ##b \not\in B## and ## a\lt b##, then ##a \in A##
  6. If ##a \not\in A## and ##b \gt a##, then ##b \in B##
  7. For each ##a \in A## there is some ## b \gt a ## so that ##b \in A##
  8. For each ##b \in B## there is some ## a \lt b## so that ##a \in B##

For the given cut, I tried to prove Property 5. Here is my attempt:

If ## b \not \in B## then we have:

Case 1: ## b \leq 0##
Sub-Case (I): ##b=0##. If ##a \lt b \implies a \lt 0##, well then ##a \in A##.
Sub-Case (II): ##b \lt 0##. If ## a \lt b \implies b \lt 0##, again ## a \in A##

Case 2: ## b^2 \leq 2##
Sub-Case (I): ##b^2 = 2##. If ## a \lt b implies a^2 \lt b^2 = 2##, well then ## a \in A##
Sub-Case (II): ## b^2 \lt 2##. If ## a \lt b \implies a^2 \lt b^2 \lt 2##, again ## a \in A##

That proves Property 5.

Am I right? I had a hard time in understanding why would ##b \not\in B## and ##b \not\in A## when all ## a## and ##b## in th properties listed above has to be rational numbers.
 
Physics news on Phys.org
  • #2
It looks ok to me except that your Case 2 hypothesis and proofs should specify that ##b## is positive and consider both positive and negative cases for ##a##. (In fact, maybe you should just change Case 1 to the case of ##a \le 0##.)
 

Suggested for: Proving a property of a Dedekind cut

Back
Top