Analytic continuation can be used in mathematics to assign a finite value to an infinite series that diverges to infinity. Is it correct and legitimate to equate this value to a diverging infinite series that occurs in a physical theory of nature? Will this process give a correct answer that can be verified by a physics lab experiment?(adsbygoogle = window.adsbygoogle || []).push({});

A specific example:

The infinite series 1+2+3+4+5+.... occurs in a calculation for the Casimir Effect. This series is the Zeta Function at s = -1. Z(s) = 1/1^s + 1/2^s + 1/3^s + .... The analytic continuation of Z(-1) is -1/12 Is it correct to say that 1+2+3+4+5+.... = -1/12 ? If you use the value -1/12 in your calculation of the Casimir force acting on parallel conducting plates and then measure this force in the lab, will your calculation agree with experiment?

Another example:

The Zeta function at s = 0 yields the series 1+1+1+1+1+.... The analytic continuation of Z(0) is -1/2 This series occurs in String Theory when calculating the number of space-time dimensions. Is it correct to say that 1+1+1+1+1+.... = -1/2 and use this value in your calculation? The result comes out to be 10 dimensions. Should we expect nature to agree with this calculation?

**Physics Forums - The Fusion of Science and Community**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Analytic continuation and physics

Tags:

Loading...

Similar Threads - Analytic continuation physics | Date |
---|---|

Contour integration & the residue theorem | Sep 1, 2015 |

Analytical continuation by contour rotation | Jun 4, 2015 |

Analytic continuation of Airy function | May 19, 2015 |

Extending radius of convergence by analytic continuation | Mar 1, 2012 |

Analytic continuation of an integral involving the mittag-leffler function | Feb 18, 2012 |

**Physics Forums - The Fusion of Science and Community**