Undergrad Analytic functions of analytic functions

  • Thread starter Thread starter Physgeek64
  • Start date Start date
  • Tags Tags
    Functions
Click For Summary
An analytic function of an analytic function is itself analytic, as expressed by the composition h(z) = g(f(z)). The discussion explores whether this is a proven fact or requires proof, with some participants suggesting that differentiation shows h'(z) = g'(f(z)) f'(z) indicates analyticity. The definitions of analytic functions are debated, with one emphasizing differentiability in a neighborhood and the other focusing on convergence of power series. A suggested proof involves using power series expansions for f and g, demonstrating that the composition h can be expressed as a power series. The conversation concludes that while the proof is challenging, it is a worthwhile endeavor.
Physgeek64
Messages
245
Reaction score
11
In our complex variables course we were told that an analytic function of an analytic function is itself analytic. i.e. For ##h(z)=g(f(z))## ##h(z)## is analytic.

I was wondering is this is just a fact, or if it is possible to prove this statement. I did some googling and the best response I could find was :

##h'(z)= g'(f(z)) f'(z)##, which for ##f'(z)## and ##g'(f(z))## not equal to zero, describes an analytic function.. But I'm afraid this doesn't seem like much of a proof to me.

Many thanks :)
 
Mathematics news on Phys.org
What is your definition of an analytic function? Is it
"We say that the function ##f## is analytic in a neighbourhood ##U## of ##z_0## if it is differentiable everywhere in ##U##." (http://www.maths.ed.ac.uk/~jmf/Teaching/MT3/ComplexAnalysis.pdf)
or is it
"In mathematics, an analytic function is a function that is locally given by a convergent power series."
(https://en.wikipedia.org/wiki/Analytic_function)

For the first one the differentiation you mentioned would be enough (plus that ##g(U)## is open).
Then it remains to show that the two definitions are equivalent. (See chapter 2.3.3 in the first source I mentioned.)
 
  • Like
Likes mfb
I suggest attempting to prove it as follows.

Choose an arbitrary point ##z## and a point ##z'## sufficiently close to ##z## that the power series ##\Big(S^{f,z}_n(z')\Big)_{n=1}^\infty## for ##f(z')## at ##z## converges to ##f(z')## and the power series ##\Big(S^{g,f(z)}_n(z')\Big)_{n=1}^\infty## for ##g(f(z'))## at ##f(z)## converges to ##g(f(z'))##. We know this can be done by the definition of analyticity of the two functions.

Then take the power series for ##g(f(z'))## and replace all occurrences of ##f(z')## by the power series for ##f(z')##. If we write ##\Delta z'\equiv z'-z## then this gives us an infinite series whose terms are powers of an infinite series in ##\Delta z'##. By adding coefficients across the same powers of ##\Delta z'## we can find the coefficient of each power of ##\Delta z'## in the power series that is our candidate for the actual power series for ##h##. Write out the coefficients for the first few powers and a pattern should emerge that will allow writing a formula for the coefficient of ##(\Delta z')^n##. We now have a power series that we would hope will converge to ##h(z')## for ##z'## sufficiently close to ##z##.

Now we need to use epsilon-delta arguments to show that there is some ##r## such that for ##|z'-z|<r##, the power series for ##g(f(z'))## does converge and is equal to ##g(f(z'))##.

Both parts have their challenges, but it's an interesting yet eminently doable problem and should be enjoyable.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
7
Views
2K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K