Andrew's question at Yahoo Answers (Similar matrices)

  • Context: MHB 
  • Thread starter Thread starter Fernando Revilla
  • Start date Start date
  • Tags Tags
    Matrices
Click For Summary
SUMMARY

The discussion centers on finding a diagonal matrix C and an invertible matrix B such that the matrix A can be expressed as A = BCB-1. The matrix A is given as:
A =
7 -8 0
4 -5 0
-1 1 1. The characteristic polynomial of A is determined to be (1 - λ)(λ + 1)(λ - 3), leading to eigenvalues of 1, -1, and 3. The matrices B and C are explicitly defined as B =
[0 1 4
0 1 2
1 1 -1] and C =
[1 0 0
0 -1 0
0 0 3], confirming that A can be diagonalized as A = BCB-1.

PREREQUISITES
  • Understanding of eigenvalues and eigenvectors
  • Familiarity with diagonalization of matrices
  • Knowledge of characteristic polynomials
  • Proficiency in matrix operations, including matrix multiplication and inversion
NEXT STEPS
  • Study the process of diagonalization in linear algebra
  • Learn about the properties of eigenvalues and eigenvectors
  • Explore the computation of characteristic polynomials for various matrices
  • Practice matrix multiplication and inversion techniques
USEFUL FOR

Students and professionals in mathematics, particularly those studying linear algebra, as well as educators looking for practical examples of matrix diagonalization and eigenvalue problems.

Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
Here is the question:

Let A =
7 -8 0
4 -5 0
-1 1 1

If possible, find a diagonal matrix C and an invertible matrix B such that A = BCB^-1

I have found the characteristic polynomial of A, along with the eigenvalues/vectors. However I just don't understand this question, and my notes/textbook is completely useless! I assume the two matrices A and C will be similar, thus have the same eigenvalues. But how am I supposed to show that matrix!?

Here is a link to the question:

Question on Similar Matrices? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Physics news on Phys.org
Hello Andrew,

The characteristic polynomial of $A$ is: $$\begin{aligned}\chi (\lambda)&=\begin{vmatrix}{7-\lambda}&{-8}&{0}\\{4}&{-5-\lambda}&{0}\\{-1}&{1}&{1-\lambda}\end{vmatrix}\\&=(1-\lambda)\begin{vmatrix}{7-\lambda}&{-8}\\{4}&{-5-\lambda}\end{vmatrix}\\&=(1-\lambda)(\lambda+1)(\lambda-3)\end{aligned}$$ The eigenvalues are $1,-1,3$ (all simple) and according to a well-known property, the matrix is diagonalizable. The eigenspaces (with corresponding basis) are: $$V_1\equiv\left \{ \begin{matrix}6x_1-8x_2=0\\4x_1-6x_2=0\\-x_1+x_2=0\end{matrix}\right.\qquad B_{V_1}=\{(0,0,1)\}$$ $$V_{-1}\equiv\left \{ \begin{matrix}8x_1-8x_2=0\\4x_1-4x_2=0\\-x_1-x_2+2x_3=0\end{matrix}\right.\qquad B_{V_{-1}}=\{(1,1,1)\}$$ $$V_3\equiv\left \{ \begin{matrix}4x_1-8x_2=0\\4x_1-8x_2=0\\-x_1-x_2-2x_3=0\end{matrix}\right.\qquad B_{V_3}=\{(4,2,-1)\}$$ So, if $$B=\begin{bmatrix}{0}&{1}&{\;\;4}\\{0}&{1}&{\;\;2}\\{1}&{1}&{-1}\end{bmatrix}\;,\quad C=\begin{bmatrix}{1}&{\;\;0}&{0}\\{0}&{-1}&{0}\\{0}&{\;\;0}&{3}\end{bmatrix}$$ then, $A=BCB^{-1}$. You can easily verify this equality proving the equivalent one $AB=BC$.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
1
Views
2K