MHB Andrew's question at Yahoo Answers (Similar matrices)

  • Thread starter Thread starter Fernando Revilla
  • Start date Start date
  • Tags Tags
    Matrices
AI Thread Summary
The discussion revolves around finding a diagonal matrix C and an invertible matrix B such that the matrix A can be expressed as A = BCB^-1. The characteristic polynomial of A is determined to be (1-λ)(λ+1)(λ-3), revealing the eigenvalues 1, -1, and 3, which confirms that A is diagonalizable. The eigenspaces corresponding to these eigenvalues are identified, leading to the construction of matrices B and C. Specifically, B is given as a matrix formed from the eigenvectors, and C is the diagonal matrix containing the eigenvalues. The relationship A = BCB^-1 can be verified by checking the equivalent equation AB = BC.
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
Here is the question:

Let A =
7 -8 0
4 -5 0
-1 1 1

If possible, find a diagonal matrix C and an invertible matrix B such that A = BCB^-1

I have found the characteristic polynomial of A, along with the eigenvalues/vectors. However I just don't understand this question, and my notes/textbook is completely useless! I assume the two matrices A and C will be similar, thus have the same eigenvalues. But how am I supposed to show that matrix!?

Here is a link to the question:

Question on Similar Matrices? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello Andrew,

The characteristic polynomial of $A$ is: $$\begin{aligned}\chi (\lambda)&=\begin{vmatrix}{7-\lambda}&{-8}&{0}\\{4}&{-5-\lambda}&{0}\\{-1}&{1}&{1-\lambda}\end{vmatrix}\\&=(1-\lambda)\begin{vmatrix}{7-\lambda}&{-8}\\{4}&{-5-\lambda}\end{vmatrix}\\&=(1-\lambda)(\lambda+1)(\lambda-3)\end{aligned}$$ The eigenvalues are $1,-1,3$ (all simple) and according to a well-known property, the matrix is diagonalizable. The eigenspaces (with corresponding basis) are: $$V_1\equiv\left \{ \begin{matrix}6x_1-8x_2=0\\4x_1-6x_2=0\\-x_1+x_2=0\end{matrix}\right.\qquad B_{V_1}=\{(0,0,1)\}$$ $$V_{-1}\equiv\left \{ \begin{matrix}8x_1-8x_2=0\\4x_1-4x_2=0\\-x_1-x_2+2x_3=0\end{matrix}\right.\qquad B_{V_{-1}}=\{(1,1,1)\}$$ $$V_3\equiv\left \{ \begin{matrix}4x_1-8x_2=0\\4x_1-8x_2=0\\-x_1-x_2-2x_3=0\end{matrix}\right.\qquad B_{V_3}=\{(4,2,-1)\}$$ So, if $$B=\begin{bmatrix}{0}&{1}&{\;\;4}\\{0}&{1}&{\;\;2}\\{1}&{1}&{-1}\end{bmatrix}\;,\quad C=\begin{bmatrix}{1}&{\;\;0}&{0}\\{0}&{-1}&{0}\\{0}&{\;\;0}&{3}\end{bmatrix}$$ then, $A=BCB^{-1}$. You can easily verify this equality proving the equivalent one $AB=BC$.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top