It seems the best you can do is determine that "a nonzero spacelike vector is orthogonal to a nonzero timelike one" if their Minkowski-dot product is zero.
Angle measure is usually defined as the ratio of arc-length on a "circle" to the radius. With two future-timelike vectors, one can use the intercepted arc-length of a unit hyperbola to define the angle between two future-timelike vectors. (This is called the rapidity.) However, there is no such hyperbola for a timelike and a spacelike vector. (One could also think of an angle as a parameter in the Lorentz Transformation to "rotate" one vector into another... However, Lorentz Transformations preserve the timelike (or, respectively, spacelike or null) nature of a vector.)
A while back I thought about defining the angle you seek in terms of the angle between a timelike vector and a timelike-vector-orthogonal-to-the-spacelike-vector...of course, all three vectors in a common plane. However, it seems that one needs to play around with signs to get things to be consistent... however, this scheme looked rather unnatural to me... and didn't seem to have an immediate physical or geometrical interpretation.