Angle of elevation and depression problems

  • Context: MHB 
  • Thread starter Thread starter Jerome1
  • Start date Start date
  • Tags Tags
    Angle Depression
Click For Summary
SUMMARY

The discussion focuses on solving angle of elevation and depression problems using trigonometric principles. In the first scenario, the height of a clock tower is determined using angles of elevation of 30 degrees and 40 degrees from different distances, leading to the formula for height: h = (60tan(40°)) / (sqrt(3)tan(40°) - 1). The second scenario involves calculating the length of a tunnel using the cosine rule, given two sides and the included angle of 48 degrees. Both problems illustrate practical applications of trigonometry in real-world contexts.

PREREQUISITES
  • Understanding of trigonometric functions (sine, cosine, tangent)
  • Familiarity with the tangent function for angle of elevation calculations
  • Knowledge of the cosine rule for triangle side length calculations
  • Ability to perform calculations with angles in degrees
NEXT STEPS
  • Study the derivation and application of the tangent function in real-world problems
  • Learn how to apply the cosine rule in various triangle configurations
  • Explore advanced trigonometric identities and their applications
  • Practice solving elevation and depression problems using different angles and distances
USEFUL FOR

Students in mathematics, engineers involved in construction and surveying, and anyone interested in applying trigonometry to solve practical problems related to heights and distances.

Jerome1
Messages
17
Reaction score
0
(1) Prof micheal walks towards the university clock tower and decides to find the height of the clock above ground. He determines the angle of elevation to be 30 degrees and after proceeding an additional 60m towards the base of the tower, he finds the angle of elevation to be 40 degrees. What is the height of the clock tower

(2) An engineer who is to dig a tunnel through a small mountain wish to deternine the length of the tunnel. Point X and Y are chosen as the end points of the tunnel, then a point Z is chosen from which the distances to X and Y are found to be 19km and 23km respectively. If angle XZY measures 48 degrees, find the length of the tunnel.
 
Mathematics news on Phys.org
If you draw out 1, you'll see two right angle triangles, one with an angle of 30 degrees with a distance of x metres from the clock tower, the other with an angle of 40 degrees with a distance of (x - 60) metres from the clock tower. Obviously both have a height of h metres, the clock tower's height. From there:

$\displaystyle \begin{align*} \tan{ \left( 30^{\circ} \right) } &= \frac{h}{x} \\ \frac{1}{\sqrt{3}} &= \frac{h}{x} \\ \frac{x}{\sqrt{3}} &= h \\ x &= h\sqrt{3} \end{align*}$

and also

$\displaystyle \begin{align*} \tan{ \left( 40^{\circ} \right) } &= \frac{h}{x - 60} \\ \tan{ \left( 40^{\circ} \right) } &= \frac{h}{h\sqrt{3} - 60} \\ \left( h\sqrt{3} - 60 \right) \tan{ \left( 40^{\circ} \right) } &= h \\ h\sqrt{3} \tan{ \left( 40^{\circ} \right) } - 60\tan{ \left( 40^{\circ} \right) } &= h \\ h\sqrt{3} \tan{ \left( 40^{\circ} \right) } - h &= 60\tan{ \left( 40^{\circ} \right) } \\ h \left[ \sqrt{3} \tan{ \left( 40^{\circ} \right) } - 1 \right] &= 60\tan{ \left( 40^{\circ} \right) } \\ h &= \frac{60\tan{ \left( 40^{\circ} \right) } }{\sqrt{3}\tan{ \left( 40^{\circ} \right) } - 1} \end{align*}$

Now put this into your calculator to get your decimal approximation :)

- - - Updated - - -

Jerome said:
(1) Prof micheal walks towards the university clock tower and decides to find the height of the clock above ground. He determines the angle of elevation to be 30 degrees and after proceeding an additional 60m towards the base of the tower, he finds the angle of elevation to be 40 degrees. What is the height of the clock tower

(2) An engineer who is to dig a tunnel through a small mountain wish to deternine the length of the tunnel. Point X and Y are chosen as the end points of the tunnel, then a point Z is chosen from which the distances to X and Y are found to be 19km and 23km respectively. If angle XZY measures 48 degrees, find the length of the tunnel.

For the second, draw it out and you'll see you have a triangle with two known lengths and the angle between them known. You can use the cosine rule to evaluate the third length (which is the distance XY, the length of the tunnel).
 

Similar threads

Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
10
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 11 ·
Replies
11
Views
1K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 20 ·
Replies
20
Views
4K
  • · Replies 2 ·
Replies
2
Views
18K