MHB Angular Speed of Smaller Wheel

mathdad
Messages
1,280
Reaction score
0
Let r = radius

See picture.

If r = 6 cm, R = 10 cm, and the angular speed of the larger wheel is 100 rpm, determine the angular speed of the smaller wheel in radians per minute.

Again, 1 revolution = 2 pi radians.

I need to use w = θ/t.

So, θ = 100 rpm • 2 pi radians.

θ = 200 pi radians

w = 200 pi radians/min, which is my answer.

At this point, I doubted that my answer is right because it did not take long to find w or omega representing the angular speed.

The book's answer is 1000/3 radians/min.

What did I forget to do?

View attachment 7910
 

Attachments

  • sDraw_2018-03-07_02-12-51.png
    sDraw_2018-03-07_02-12-51.png
    8.9 KB · Views: 117
Mathematics news on Phys.org
f r = 6 cm, R = 10 cm, and the angular speed of the larger wheel is 100 rpm, determine the angular speed of the smaller wheel in radians per minute.

$v = r \omega_1$, where $\omega_1$ is the angular speed of the smaller wheel

$v = R \omega_2$, where $\omega_2$ is the angular speed of the larger wheel.

the belt connecting the two wheels has a fixed linear speed, $v$ ...

$\implies r \omega_1 = R \omega_2$

$\omega_1 = \dfrac{R \omega_2}{r} = \dfrac{10 \cdot 100}{6} = \dfrac{500}{3} \, rpm$

convert $\omega_1$ to radians per minute ...

$\dfrac{500 \, rev}{3 \, min} \cdot \dfrac{2\pi \, rad}{rev} = \dfrac{1000\pi}{3} \, rad/min$
 
Nicely-done. I will try your solution steps for this question to answer the textbook question where r = 6 cm and R = 10 cm.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top