faust9
- 690
- 2
Ok, did I do this correctly?
The question goes:
Determine the angular velocity and angular acceleration of the disk and the link AB at the instant A rotates through 90 degrees.
See attachment for the figure.
What I did--first the disk:
Assuming \alpha_{disk} is constant
<br /> \alpha_{disk}=\alpha_0=\alpha_{90}=6\frac{rad}{s^2}<br />
<br /> \omega_{90}^2=\omega_{0}^2+2\alpha(\theta_{90}-\theta_{0})<br />
<br /> \omega_{90}=\sqrt{(5\frac{rad}{s})^2+2(6\frac{rad}{s^2})(\frac{\pi}{2})}=6.622\frac{rad}{s}
So, angular velocity of the disk is 6.622 rad/s, and angular acceleration of the disk is 5 rad/s^2.
Now for the link:
<br /> \vec{v}_A=\vec{ \omega }\times \vec{r}_A<br />
<br /> \vec{v}_A=\omega(r_A)i=6.622\frac{rad}{s}(0.5\frac{ft}{rad})=3.311\frac{ft}{s}i<br />
<br /> \vec{v}_B=\vec{v}_A+\vec{ \omega }\times \vec{r}_{B/A}<br />
Used trig to find this:
<br /> \vec{r}_{B/A}=2\cos 19i+2\sin 19j<br />
\vec{v}_B=3.311i+\omega(0.652i-1.891j)
<br /> v_bi=3.311i+0.652\omega i<br />
<br /> v_bj=-1.891\omega j<br />
solve simultaneously and I get:
<br /> \omega=-1.302\frac{rad}{s}<br />
Is this right thus far?
[edit]forgot picture
The question goes:
Determine the angular velocity and angular acceleration of the disk and the link AB at the instant A rotates through 90 degrees.
See attachment for the figure.
What I did--first the disk:
Assuming \alpha_{disk} is constant
<br /> \alpha_{disk}=\alpha_0=\alpha_{90}=6\frac{rad}{s^2}<br />
<br /> \omega_{90}^2=\omega_{0}^2+2\alpha(\theta_{90}-\theta_{0})<br />
<br /> \omega_{90}=\sqrt{(5\frac{rad}{s})^2+2(6\frac{rad}{s^2})(\frac{\pi}{2})}=6.622\frac{rad}{s}
So, angular velocity of the disk is 6.622 rad/s, and angular acceleration of the disk is 5 rad/s^2.
Now for the link:
<br /> \vec{v}_A=\vec{ \omega }\times \vec{r}_A<br />
<br /> \vec{v}_A=\omega(r_A)i=6.622\frac{rad}{s}(0.5\frac{ft}{rad})=3.311\frac{ft}{s}i<br />
<br /> \vec{v}_B=\vec{v}_A+\vec{ \omega }\times \vec{r}_{B/A}<br />
Used trig to find this:
<br /> \vec{r}_{B/A}=2\cos 19i+2\sin 19j<br />
\vec{v}_B=3.311i+\omega(0.652i-1.891j)
<br /> v_bi=3.311i+0.652\omega i<br />
<br /> v_bj=-1.891\omega j<br />
solve simultaneously and I get:
<br /> \omega=-1.302\frac{rad}{s}<br />
Is this right thus far?
[edit]forgot picture
Attachments
Last edited: