B Antiparticles moving opposite direction in time?

  • B
  • Thread starter Thread starter rolnor
  • Start date Start date
  • Tags Tags
    Direction Time
rolnor
Messages
122
Reaction score
14
TL;DR Summary
Does antiparticles move backwards in time
I have seen this in pop-science, is it correct? Does antiparticles move in the oppisite direction of time? Is it possible to prove this experimentaly? Does it have any practical consequenses? We use PET-scaning everyday, is there anything to consider when working with positrones connected with them moving back in time?
 
  • Skeptical
Likes PeroK
Physics news on Phys.org
rolnor said:
I have seen this in pop-science
Which should already raise a red flag that the answer to this...

rolnor said:
is it correct?
...is going to be "no". Which it is.

Thread closed.
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...
Back
Top