MHB Applying quadratic formula to inverse of a function: Calculation problem

self4u
Messages
2
Reaction score
0
Hi - I'm trying to figure out the specific steps in a math textbook. I'm trying to figure out how the textbook did its algebra here with a quadratic formula to find an inverse of a function:

View attachment 5796

Sadly there's a step I'm supposed to know by now in the simplification algebra in there 3 steps shown...and I'm missing it.

From step 2 to step 3...it looks like only part of the equation is divided by the denominator -10. I didn't think it was possible to divide by 10 with individual numbers under the square root symbol. Furthermore - step 3 shows a reduced ".2(60-h)". How did 20 go to .2? How is (60-h) completely unaffected?

Sorry for such a simple question and thank you in advance for your help!
 

Attachments

  • quadhelp.JPG
    quadhelp.JPG
    5.2 KB · Views: 115
Mathematics news on Phys.org
Okay I think I've finally figured it out. I'm a dolt. But since I'm a dolt, I might as well post why I'm a dolt due to the order of operations.

Step 2A: Simply divide every single number by -10. So the method to get to Step 3 becomes:

a) (-30/-10) which becomes positive 3.

b) Then (30sq./-10) which becomes -3sq...then becoming 9.

c) Then (20/-10) which becomes -2.

d) Then (60/-10) which becomes -6. At this point we could multiple it with the (-2) above making positive 12.

e) Then (h/-10) which becomes -h/10. At this point we could multiple it with the (-2) above making -2/10h...simplified to -1/5h...or -.2h.

That gets to step 3...remembering to keep the square root above 21 - .2h.
 
$$\begin{align*}\dfrac{-30\pm\sqrt{30^2+20(60-h)}}{-10}&=3\pm\dfrac{\sqrt{30^2+20(60-h)}}{-1\cdot|10|} \\
&=3\pm\dfrac{\sqrt{30^2+20(60-h)}}{-1\sqrt{10^2}} \\
&=3\mp\sqrt{\dfrac{900+20(60-h)}{100}} \\
&=3\mp\sqrt{9+\dfrac15(60-h)}=3\mp\sqrt{3^2+.2(60-h)}\end{align*}$$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
7
Views
3K
Replies
4
Views
4K
Replies
5
Views
1K
Replies
3
Views
4K
Replies
3
Views
3K
Replies
2
Views
4K
Replies
4
Views
2K
Back
Top