MHB Approximate solution for non-linear ODE

topsquark
Science Advisor
Homework Helper
Insights Author
MHB
Messages
2,020
Reaction score
843
I've decided to finish off this stage of my GR problem by finding an interval over which the acceleration of the object is "roughly" constant. I don't need help with the Math per se, but I would like your opinion on the method I am proposing. The Math is sufficiently ugly that I'd like some feedback before I get started on a path that will take me too long to realize is fruitless. So here we go:

The equation is this:
[math]\frac{d^2 x}{d \tau ^2} + \frac{c}{2} \left ( \frac{d x}{d \tau } \right ) ^2 = -A e^{-2 c x}[/math]
where c and A are constant. I am convinced that this has no non-trivial exact solutions.

What I would like to do is find an interval in x such that [math]\frac{d ^2 x}{d \tau ^2} \approx \text{constant} \equiv a[/math].

I am proposing the following strategy: I am going to drop an object from a height H, so [math]x_0 = H[/math] from rest, so [math]v_0 = \left . \frac{dx}{d \tau} \right |_0 = 0[/math]. That means that I'm going to set [math]x = H - \frac{1}{2}a \tau ^2[/math]. My thought from here is to expand the exponential function on the RHS as a Taylor series to zeroth order, with remainder: this will give me a range to solve for [math]\Delta h[/math], which is an interval over the distance x where the acceleration is roughly constant. It will pretty much go like this:
[math]\frac{d^2 x}{d \tau ^2} + \frac{c}{2} \left ( \frac{d x}{d \tau } \right ) ^2 = -A e^{-2 c x}[/math]

[math]\frac{d^2x}{d \tau^2} = a, ~~ \frac{dx}{d \tau} = a \tau, ~~ x = \frac{1}{2}a \tau ^2[/math]

[math]a + \frac{c}{2} \cdot ( a \tau ) ^2 \approx -A e^{-2 c x -2c x_0} [/math]

[math]a + \frac{1}{2}c a^2 \tau ^2 \approx -A \left ( e^{-2cH} \cdot e^{c a \tau ^2} - 2ce^{-2 c \xi } \Delta h \right )[/math]
Where the last term is the remainder written in the Lagrange form, [math]\Delta h = x - x_0[/math], and [math]x_0 < \xi < x[/math].

How do I finish this? I want an interval on x (which would be [math]\Delta h[/math]) where the acceleration is roughly constant... I want to solve for [math]\Delta h[/math] in terms of [math]\tau[/math]. Do I vary the value of [math]\xi[/math] to get this?

Is this method even appropriate? Is there another approximation scheme I should try instead?

Thanks in advance!

-Dan
 
Mathematics news on Phys.org
Hey Dan!

That sounds pretty complicated.

Just brainstorming here, but if I look at:
topsquark said:
[math]\frac{d^2 x}{d \tau ^2} + \frac{c}{2} \left ( \frac{d x}{d \tau } \right ) ^2 = -A e^{-2 c x}[/math]
where c and A are constant. I am convinced that this has no non-trivial exact solutions.

What I would like to do is find an interval in x such that [math]\frac{d ^2 x}{d \tau ^2} \approx \text{constant} \equiv a[/math].

I would first think like:
$$\ddot x + \frac c 2 \dot x^2 = f(x) \Rightarrow \ddot x=f(x) - \frac c 2 \dot x^2$$

If we want $\ddot x \approx a$, that means that:
$$\d {}\tau \ddot x \approx 0 \Rightarrow f'(x)\dot x - c \dot x \ddot x \approx 0 \Rightarrow f'(x) \approx ca$$

If I'm not mistaken, that comes out as:
$$x \approx \frac 1 {2c}\ln\frac{A}{-ca}$$
 
I like Serena said:
Hey Dan!

That sounds pretty complicated.

Just brainstorming here, but if I look at:I would first think like:
$$\ddot x + \frac c 2 \dot x^2 = f(x) \Rightarrow \ddot x=f(x) - \frac c 2 \dot x^2$$

If we want $\ddot x \approx a$, that means that:
$$\d {}\tau \ddot x \approx 0 \Rightarrow f'(x)\dot x - c \dot x \ddot x \approx 0 \Rightarrow f'(x) \approx ca$$

If I'm not mistaken, that comes out as:
$$x \approx \frac 1 {2c}\ln\frac{A}{-ca}$$
Actually it comes out to be
[math]x \approx -\frac{1}{2c} ln \left ( \frac{a}{2A} \right )[/math]

Which implies that, since a < 0 (which I should have noted earlier!) that A < 0 which implies c < 0 as well. (I never gave the form of A.)

I think this concept is better than the one I was trying to derive. I was trying to find what intervals [math]\Delta h[/math] of x would be related to a roughly constant acceleration, but I just couldn't figure out how to formulate it. But this form is actually better for what I was trying to figure out. Thanks for the help!

-Dan
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top