On asymptotically stable systems and bounded solutions

  • #1
psie
122
12
Homework Statement
Assume that the homogenous system ##x'=Ax## is asymptotically stable. Show that if ##b(t)## is bounded for ##t\geq t_0## then every solution of the system ##x'=Ax+b(t)## is bounded for ##t\geq t_0##.
Relevant Equations
A system ##x'=Ax## is said to be asymptotically stable iff all eigenvalues of ##A## have a negative real part. Moreover, the general solution to ##x'=Ax+b(t)## and ##x(t_0)=x_0## is given by ##x(t)=e^{tA}x_0+\int_{t_0}^te^{(t-\tau)A}b(\tau)d\tau##.
We need to show ##\lVert x(t)\rVert## is bounded. It is given that ##\lVert b(t)\rVert\leq c_1## for ##t\geq t_0##. A TA has claimed that ##\lVert e^{tA}\rVert\leq ce^{-\epsilon t}## holds for some ##\epsilon>0## and a constant ##c##, when ##t\geq0##. I have a hard time confirming this claim and I'd be grateful if anyone could comment on this. If this bound is true, then the statement in the exercise follows from the following estimates

First, for ##t\geq t_0##, \begin{align}\left\lVert \int_{t_0}^te^{(t-\tau)A}b(\tau)d\tau\right\rVert&\leq \int_{t_0}^t \left\lVert e^{(t-\tau)A}\right\rVert \left\lVert b(\tau) \right\rVert d\tau \nonumber \\
&\leq c\cdot c_1 \int_{t_0}^te^{-\epsilon(t-\tau)}d\tau \nonumber \\
& =c\cdot c_1\left(\frac1{\epsilon}-\frac{e^{-\epsilon(t-t_0)}}{\epsilon}\right) \nonumber \\
&\leq \frac{c\cdot c_1}{\epsilon} \nonumber\\
& =\frac{C}{\epsilon}
\nonumber\end{align}

Second, for ##t\geq t_0##, $$\lVert e^{tA}x_0\rVert\leq ce^{-\epsilon t}\lVert x_0\rVert \leq ce^{-\epsilon t_0} \lVert x_0\rVert=D$$

Finally then, ##\lVert x(t)\rVert## must be bounded by ##\frac{C}{\epsilon}+D## when ##t\geq t_0##.

But why does ##\lVert e^{tA}\rVert\leq ce^{-\epsilon t}## hold? I know that every element in ##e^{tA}## is a linear combination of terms of the form ##t^je^{\lambda t}##, where ##\lambda## is an eigenvalue of ##A## and ##j## is less than the multiplicity of that eigenvalue. Moreover, I know of ##\lVert e^{A}\rVert\leq e^{\lVert A\rVert}##, but I don't know if this is helpful.

Also, I have assumed in my computations that ##t_0\geq 0##. I guess it makes no sense for ##t_0<0##, right?
 
Physics news on Phys.org
  • #2
nuuskur said:
If ##A## is a Jordan block, then ##\|\exp(At)\|\to 0## as ##t\to\infty##. More specifically, if we write ##A=\lambda I_n + N##, where ##N## is nilpotent, then ##\exp (At) = \exp (\lambda I_nt)\exp (Nt)##. In particular ##\exp(Nt) = \sum _{k=0}^M \frac{(Nt)^k}{k!}##, where ##N^{M+1}=0## due to nilpotency. Putting ##\lambda = a+bi##, where by assumption ##a<0## it follows that
[tex]\left\|\exp(At)\right\| = \left\|e^{at}\exp(Nt)\right\| =: Ce^{at}.[/tex]
In general, assume ##A## is in its Jordan normal form and since there are finitely many blocks, you can take maximums.
Interesting. I am not too familiar with this decomposition, and Wikipedia is not so helpful, but we have as many Jordan blocks as there are distinct eigenvalues, right?

My understanding is also that when we take the matrix exponential of a matrix in Jordan normal form, then this is simply the matrix exponential applied to each block. However, how do I compute the norm for a matrix in Jordan normal form?

Lastly, why does ##\lVert\exp(Nt)\rVert## evaluate to a constant? Shouldn't it depend on ##t##?
 
  • Like
Likes nuuskur
  • #3
Correct, it does depend on ##t##. I was getting ahead of myself. It holds that
##\|e^{-\delta t}\exp(Nt)\| \to 0## as ##t\to\infty## for any ##\delta >0##. Indeed we see that
\begin{align*}
\|e^{-\delta t}\exp(Nt)\| = \left\|e^{-\delta t}\sum _{k=0}^M\frac{N^k}{k!}t^k\right\| \leqslant e^{-\delta t}\sum _{k=0}^M \frac{\|N\|^k}{k!}t^k \xrightarrow[t\to\infty]{}0
\end{align*}
because polynomial grows slower than exponential goes to zero. So we have boundedness ##\|e^{-\delta t}\exp(Nt)\| \leqslant C##.

Let ##A = \lambda I_n + N## be a Jordan block, where ##\lambda = a+bi## (and ##a<0##).
\begin{align*}
\left\|\exp(At)\right\| = \left\|e^{a t}\exp(Nt)\right\| = \left\|e^{(a+\delta - \delta)t}\exp(Nt)\right\| = e^{(a+\delta)t}\left\|e^{-\delta t}\exp(Nt)\right\| \leqslant C e^{(a+\delta)t }.
\end{align*}

In general, assume ##A## is in its Jordan normal form. There are finitely many blocks, each corresponding to respective eigenvalue ##\lambda _k := a_k+ b_ki##. Pick ##\delta>0## sufficiently small such that ## \max a_k + \delta \leqslant -\varepsilon## for some ##\varepsilon >0##.

---

Regarding exponential of Jordan normal form. Yes, if ##J## is Jordan matrix, then ##J= \bigoplus J_k##, where the ##J_k## are Jordan blocks. So ##\exp(Jt) = \bigoplus \exp(J_kt)##. I confess I haven't tried computing (2-)norm of a Jordan matrix. I know that spectral radius is a lower bound, but that's about all I can say.
 
Last edited:
  • Like
Likes psie
  • #4
nuuskur said:
So we have boundedness ##\|e^{-\delta t}\exp(Nt)\| \leqslant C##.
Thanks. Do we have boundedness for all ##t## or only for some ##t##?
 
  • #5
This bound applies for all ##t\geqslant 0##. If ##t_0## is sufficiently large, then ##\|e^{-\delta t}\exp(Nt)\|\leqslant \varepsilon ## for ##t>t_0## and ##\|e^{-\delta t}\exp(Nt)\|## is continuous (because it's a composition of continuous maps) on any closed interval ##[0,t_0]##.

edit: I should mention the ##C## is a bound for this particular Jordan block. But again, you can take the maximum of these bounds to obtain a bound for the entire matrix.
 
Last edited:
  • Like
Likes psie

1. What is an asymptotically stable system?

An asymptotically stable system is a dynamical system where the solutions tend towards a stable equilibrium point as time goes to infinity. In other words, the system approaches a stable state without oscillating or diverging.

2. How can we determine if a system is asymptotically stable?

One common method to determine if a system is asymptotically stable is by analyzing the eigenvalues of the system's state matrix. If all the eigenvalues have negative real parts, then the system is asymptotically stable.

3. What are bounded solutions in the context of asymptotically stable systems?

Bounded solutions in the context of asymptotically stable systems refer to the behavior of the system's solutions being limited or confined within a certain range. Even though the solutions may approach a stable equilibrium, they do not grow uncontrollably.

4. Why is it important for systems to be asymptotically stable with bounded solutions?

Having an asymptotically stable system with bounded solutions ensures that the system will reach a stable state over time without exhibiting unpredictable behavior. This is crucial for many real-world applications where stability and predictability are essential.

5. Can all systems be made asymptotically stable with bounded solutions?

Not all systems can be made asymptotically stable with bounded solutions, as it depends on the system's dynamics and properties. However, through proper design and control strategies, many systems can be modified to achieve asymptotic stability with bounded solutions.

Similar threads

  • Calculus and Beyond Homework Help
Replies
2
Views
497
  • Calculus and Beyond Homework Help
Replies
1
Views
708
  • Advanced Physics Homework Help
Replies
0
Views
266
  • Differential Equations
Replies
1
Views
770
  • Differential Equations
Replies
5
Views
655
  • Calculus and Beyond Homework Help
Replies
2
Views
526
  • Calculus and Beyond Homework Help
Replies
3
Views
497
Replies
3
Views
1K
Replies
1
Views
761
  • Calculus and Beyond Homework Help
Replies
2
Views
1K
Back
Top