MHB Approximating Solutions with Coefficients of $Y^m_\ell$

  • Thread starter Thread starter Dustinsfl
  • Start date Start date
  • Tags Tags
    Coefficients
Dustinsfl
Messages
2,217
Reaction score
5
Using the coefficients determined, combine the terms to arrive at the following approximation for the solution
$$
u(r,\theta,\phi)\simeq 25 + \frac{75\sqrt{2}}{2}r\sin\theta\cos\phi + \frac{125}{\pi}r^2\sin^2\theta\cos 2\phi.
$$

How do I combine them?

The coefficients are
For $\ell = 0$ and $m = 0$, we have
$$
Y^0_0(\theta,\varphi) = \frac{1}{2\sqrt{\pi}}.
$$
For $\ell = 1$ and $m = 1$, we have
\begin{alignat*}{3}
Y^{1}_1 & = & -\frac{1}{2}\sqrt{\frac{3}{2\pi}}(\cos^2\theta - 1)^{1/2}e^{i\varphi}\\
& = & -\frac{1}{2}\sqrt{\frac{3}{2\pi}}e^{i\varphi} \sin\theta
\end{alignat*}
From $\ell = 1$ and $m = 1$, we can obtain
$$
Y^{-1}_1 = \frac{1}{2}\sqrt{\frac{3}{2\pi}}e^{-i\varphi}\sin \theta.
$$
For $\ell = 1$ and $m = 0$, we have
$$
Y^0_1 = \frac{\sqrt{3}}{2\sqrt{\pi}}\cos\theta.
$$
For $\ell = 2$ and $m = 2$, we have
\begin{alignat*}{3}
Y^{2}_2 & = & \frac{3}{4}\sqrt{\frac{5}{6\pi}}(\cos^2\theta - 1)e^{2i\varphi}\\
& = & \frac{3}{4}\sqrt{\frac{5}{6\pi}}e^{2i\varphi}\sin^2\theta
\end{alignat*}
From $\ell = 2$ and $m = 2$, we can obtain
\begin{alignat*}{3}
Y^{-2}_2 & = & \frac{3}{4}\sqrt{\frac{5}{6\pi}}e^{-2i\varphi}\sin^2 \theta.
\end{alignat*}
For $\ell = 2$ and $m = 1$, we have
\begin{alignat*}{3}
Y^{1}_2 & = & -\frac{3}{2}\sqrt{\frac{5}{6\pi}}e^{i\varphi}(\cos^2\theta - 1)^{1/2}\cos\theta\\
& = & -\frac{3}{2}\sqrt{\frac{5}{6\pi}}e^{i\varphi}\sin \theta \cos\theta
\end{alignat*}
From $\ell = 2$ and $m = 1$, we can obtain
\begin{alignat*}{3}
Y^{-1}_2 & = & \frac{3}{2}\sqrt{\frac{5}{6\pi}}e^{-i\varphi}\sin \theta \cos\theta.
\end{alignat*}
For $\ell = 2$ and $m = 0$, we have
$$
Y^0_{\ell} = \frac{1}{4}\sqrt{\frac{5}{2\pi}}(3\cos^2\theta - 1).
$$
 
Mathematics news on Phys.org
dwsmith said:
Using the coefficients determined, combine the terms to arrive at the following approximation for the solution
$$
u(r,\theta,\phi)\simeq 25 + \frac{75\sqrt{2}}{2}r\sin\theta\cos\phi + \frac{125}{\pi}r^2\sin^2\theta\cos 2\phi.
$$

How do I combine them?

The coefficients are
For $\ell = 0$ and $m = 0$, we have
$$
Y^0_0(\theta,\varphi) = \frac{1}{2\sqrt{\pi}}.
$$
For $\ell = 1$ and $m = 1$, we have
\begin{alignat*}{3}
Y^{1}_1 & = & -\frac{1}{2}\sqrt{\frac{3}{2\pi}}(\cos^2\theta - 1)^{1/2}e^{i\varphi}\\
& = & -\frac{1}{2}\sqrt{\frac{3}{2\pi}}e^{i\varphi} \sin\theta
\end{alignat*}
From $\ell = 1$ and $m = 1$, we can obtain
$$
Y^{-1}_1 = \frac{1}{2}\sqrt{\frac{3}{2\pi}}e^{-i\varphi}\sin \theta.
$$
For $\ell = 1$ and $m = 0$, we have
$$
Y^0_1 = \frac{\sqrt{3}}{2\sqrt{\pi}}\cos\theta.
$$
For $\ell = 2$ and $m = 2$, we have
\begin{alignat*}{3}
Y^{2}_2 & = & \frac{3}{4}\sqrt{\frac{5}{6\pi}}(\cos^2\theta - 1)e^{2i\varphi}\\
& = & \frac{3}{4}\sqrt{\frac{5}{6\pi}}e^{2i\varphi}\sin^2\theta
\end{alignat*}
From $\ell = 2$ and $m = 2$, we can obtain
\begin{alignat*}{3}
Y^{-2}_2 & = & \frac{3}{4}\sqrt{\frac{5}{6\pi}}e^{-2i\varphi}\sin^2 \theta.
\end{alignat*}
For $\ell = 2$ and $m = 1$, we have
\begin{alignat*}{3}
Y^{1}_2 & = & -\frac{3}{2}\sqrt{\frac{5}{6\pi}}e^{i\varphi}(\cos^2\theta - 1)^{1/2}\cos\theta\\
& = & -\frac{3}{2}\sqrt{\frac{5}{6\pi}}e^{i\varphi}\sin \theta \cos\theta
\end{alignat*}
From $\ell = 2$ and $m = 1$, we can obtain
\begin{alignat*}{3}
Y^{-1}_2 & = & \frac{3}{2}\sqrt{\frac{5}{6\pi}}e^{-i\varphi}\sin \theta \cos\theta.
\end{alignat*}
For $\ell = 2$ and $m = 0$, we have
$$
Y^0_{\ell} = \frac{1}{4}\sqrt{\frac{5}{2\pi}}(3\cos^2\theta - 1).
$$
I'm a bit confused about this one. The problem is very similar to using the dot product to separate terms. The usual
c_{nlm} = \int \psi^*_{nlm} u(r, \theta, \phi)~ d \tau

For example, the constant term is going deal with \psi _{000} since there are no radial or angular terms. But even \psi _{000} is going to contain a e^{-Zr/a_0} factor (assuming a Hydrogen-like wavefunction for the radial part) and there is no exponential factor in your function.

-Dan
 
topsquark said:
I'm a bit confused about this one. The problem is very similar to using the dot product to separate terms. The usual
c_{nlm} = \int \psi^*_{nlm} u(r, \theta, \phi)~ d \tau

For example, the constant term is going deal with \psi _{000} since there are no radial or angular terms. But even \psi _{000} is going to contain a e^{-Zr/a_0} factor (assuming a Hydrogen-like wavefunction for the radial part) and there is no exponential factor in your function.

-Dan

I am confuse too. I am not sure what I am supposed to do but that is the question verbatim.
 
dwsmith said:
I am confuse too. I am not sure what I am supposed to do but that is the question verbatim.
I figure it out.
 
dwsmith said:
I figure it out.
I'm curious about your solution. Could you post the general idea? (I had a thought this morning about expanding the "missing" exponential. I'm wondering if that was the right approach.)

-Dan
 
topsquark said:
I'm curious about your solution. Could you post the general idea? (I had a thought this morning about expanding the "missing" exponential. I'm wondering if that was the right approach.)

-Dan

I also had to use the spherical harmonics of the solution which wasn't apparent to me by the questions wording.

We ca expand our series out term by term
\begin{alignat*}{3}
u(r,\theta,\varphi) & = & \sum_{\ell = 0}^2\sum_{m = -\ell}^{\ell} A_{\ell,m}Y^m_{\ell}(\theta,\varphi).
\end{alignat*}
For $\ell = 0$, we have that $u(r,\theta,\varphi) = 25$.
For $\ell = 1$, we have that $u(r,\theta,\varphi) = 25 + r\frac{75}{\sqrt{2}}\sin\theta\frac{e^{i\varphi} + e^{-i\varphi}}{2}$.
Lastly, for $\ell = 2$, we have
$$
u(r,\theta,\varphi) = 25 + \frac{75r}{\sqrt{2}}\sin\theta\cos\varphi + \frac{125r^2}{\pi}\sin^2\theta\cos 2\varphi = 25 + \frac{75\sqrt{2}}{2}r\sin\theta\cos\phi + \frac{125}{\pi}r^2\sin^2\theta\cos 2\phi.
$$
That is, we can approximate $u(r,\theta,\varphi)$ when $\ell = 0,1,2$ to be
$$
u(r,\theta,\phi)\simeq 25 + \frac{75\sqrt{2}}{2}r\sin\theta\cos\phi + \frac{125}{\pi}r^2\sin^2\theta\cos 2\phi.
$$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
1
Views
1K
Replies
1
Views
2K
Replies
4
Views
1K
Replies
5
Views
1K
Replies
1
Views
2K
Back
Top